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Abstract

Many physical systems consist of matter moving smoothly in some
fixed space, such as a ball rolling down a hill or flows of fluid or electric-
ity. These situations can be modeled by abstract mathematical models
called dynamical systems.
The theory of continuous dynamical systems is an extension of the theory
of ordinary differential equations. In this theory, one considers the time-
dependent behavior of points in a manifold when their velocity is given by
a vector field over the space. Depending on the vector field and location
of the points, they can converge to a fixed point, diverge, undergo semi-
convergence, or fall into a cycle where they return to the same position
after a fixed time.
In this research, I study the conditions required for stable cycles in con-
tinuous dynamical systems in Rn, in particular the existence of cycles of
varying period, and how the system can be altered to preserve the cycles.
Using online vector field simulators and numerical programming languages
such as Julia, I find approximate numerical solutions to the differential
equations to test my hypothesis that the system stays stable after even
functions of x and y are added to the x- and y- components of the vector
fields, respectively.
Dynamical systems and their behavior under continuous deformations are
the basis of chaos theory and much of mathematical physics. Furthermore,
dynamical systems have applications to circuits and image processing.

1 Introduction

Consider the theory of ordinary differential equations. In this theory, equations
of the form y′(t) = f(y(t)), where f is a function of y only, are called autonomous
differential equations. Tracing the graphs of solutions to an autonomous equa-
tion in the ty-plane, we might find some constant c where y(t) = c is a solution.
It is easy to see that such constants are precisely the zeroes of the function f .
They are called fixed points or equilibria of the system governed by the equa-
tion. Varying the initial condition y(0) may produce convergence toward or
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divergence away from the fixed points. Furthermore, continuously varying the
defining function f may affect the behavior of solutions around these points.
This paper looks at the theory of fixed points of dynamical systems, which is a
generalization of these notions to multivariable systems of equations in higher
dimensions.

2 Dynamical systems overview

A dynamical system is a manifold M endowed with a set of functions Φt : M →
M for all t ∈ T , the time dimension. Each function describes the state of the
system after a certain time t. In this paper, I will be looking exclusively at the
case where M = Rn, T = R+, and Φt is defined by an autonomous differential
equation x′ = f(x), where f : M → M is a smooth function along all input
dimensions and x is an unknown function mapping T →M .

First assume that f is continuously differentiable and f(c) is defined for all
c ∈M . By the Peano-Cauchy theorem, the initial value problem

x′ = f(x),x(0) = c (1)

has a solution for all c ∈ M , and by the Picard-Lindelof theorem the solution
is unique, because continuous differentiability implies that f is locally Lips-
chitzian [1]. Call each of these solutions xc(t). For all t ∈ T and c ∈ M , define
Φt(c) = xc(t). Note that if f is plotted as a vector field, then Φt describes the
location of each point after following the vector field for a period of time t.

2.1 Fixed points

Fixed points are points c ∈M such that f(c) = 0. Whenever c is a fixed point,
we have xc(t) = c and hence Φt(c) = c for all t ∈ T .

3 Linear dynamical systems

First we consider the case where f(c) = Ac, where A is an n by n matrix. The
point c = 0 is a fixed point. Assume A is invertible; then c = 0 is the only fixed
point. How does Φt behave for c near 0?

We first show that the set S of functions xc is a subspace of the vector
space of all functions x : t → M by showing that it is closed under ad-
dition and scalar multiplication of functions. First, let c1, c2 ∈ M . Then
x′c1

(t) = Axc1
(t) and x′c2

(t) = Axc2
(t). Let y(t) = xc1

(t) + xc2
(t). Then

y′(t) = x′c1
(t) + x′c2

(t) = Axc1
(t) + Axc2

(t) = A(xc1
(t) + xc2

(t)) = Ay(t)
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and from the initial condition y(0) = c1 + c2, it follows that y(0) = xc1+c2(t)
and thus y ∈ S. Next, let c ∈ M and a ∈ R. Then x′c(t) = Axc(t). Let
z(t) = axc(t). Then z′(t) = ax′c(t) = a · (Axc(t)) = A(axc(t)) = Az(t). It
follows that z(t) = xac(t) and thus z ∈ S. Finally, notice that the function
x0(t) = 0 is the zero vector of S. It follows that S is a vector space.

Consider the points c such that f(c) is parallel to c. These are the eigen-
vectors of A. When c is an eigenvector corresponding to a real eigenvalue λ, we
have x′c(t) = λxc(t). In fact, because f is a linear transformation, for any scalar
multiple d of c it holds that x′d(t) = λxd(t). Solving the differential equation
we obtain xc(t) = eλtc. We see quantitatively that xc(t) converges if and only
if λ is negative.

Now consider c ∈ M such that c = a1v1 + a2v2 + a3v3 + ... + amvm,
where m ≤ n and v1 through vm are eigenvectors of A corresponding to the
real distinct eigenvalues λ1 to λm. Because S is closed under linear combina-
tions, we see that xc ∈ S and xc(t) = a1xv1

(t) + a2xv2
(t) + ... + amxvm

(t) =
a1e

λ1tv1 +a2e
λ2tv2 + ...+ame

λmtvm. If all the eigenvalues are real, c can range
over M with appropriate choices of scalars a1, a2...am and vectors v1,v2...vm
from each eigenspace. From the above expression of xc(t), we can see that if
all eigenvalues are real negative numbers, then xc(t) converges to 0 as t → ∞
for all c, but if some eigenvalue λ is a non-negative real, then xv(t) does not
converge where v is an eigenvector corresponding to λ. The cases with complex
eigenvalues are similar. [2]

Solutions of the system x′ = Ax may take different forms, depending on the
characteristics of the eigenvalues.
Case 1: Real unique eigenvalues
For each real unique eigenvalue λ with associated eigenvector v, x = eλtv is a
solution. These correspond to trajectories that are stationary (λ = 0) or have
exponential growth or decay in straight lines.
Case 2: Complex eigenvalues
If λre ± iλim is a pair of complex conjugate eigenvalues with eigenvectors
vre ± ivim, then there are linearly independent solutions of the form x1 =
eλret(vre cos(λimt)−vim sin(λimt)) and x2 = eλret(vre sin(λimt)+vim cos(λimt))
corresponding to initial values vre and vim respectively. These correspond to
spiral-shaped trajectories, which either spiral inward to the origin, spiral out-
ward exponentially, or produce a stable elliptical path around the origin. The
initial point of the trajectory can be any linear combination of vre and vim.
Case 3: Real repeated eigenvalues with the same geometric multiplicities
If λ is an eigenvalue with multiplicity m associated with an m-dimensional
eigenspace with basis vectors v1,v2...vm, then x1 = eλtv1, x2 = eλtv2, ...
xm = eλtvm are linearly independent solutions. As in case 1, they correspond
to trajectories that are stationary or have exponential growth and decay in
straight lines.
Case 4: Real repeated eigenvalues with smaller geometric multiplicities
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If λ is an eigenvalue with multiplicitym associated with a k-dimensional eigenspace,
where k < m, with basis vectors v1,v2...vk, then k of the solutions are given
by x1 = eλtv1, x2 = eλtv2 ... xk = eλtvk. The other solutions are found by
choosing m− k vectors u1,u2...um−k to satisfy the equations:
(A− λI)u1 = v
(A− λI)u2 = u1

(A− λI)u3 = u2

...
(A− λI)um−k = um−k−1
The vectors u1, u2, . . . , um−k−1 are called generalized eigenvectors. In this
case, v can be any linear combination of v1,v2...vk such that the equations
have solutions.
The solutions have exponential growth and decay along a path which is nearly
linear but not quite. If λ = 0, the solutions are not stable but instead can be
expressed as a polynomial of t with vector coefficients.
Case 5: Complex repeated eigenvalues with the same geometric multiplicity
If λre ± iλim is a conjugate pair of eigenvalues with multiplicity m, associ-
ated with a 2m-dimensional eigenspace with basis vectors v1,re± iv1,im,v2,re±
iv2,im...vm,re± ivm,im, then x1 = eλret(v1,re cos(λimt)−v1,im sin(λimt)), x2 =
eλret(v2,re cos(λimt)−v2,im sin(λimt)) ... xm = eλret(vm,re cos(λimt)−vm,im sin(λimt))
and xm+1 = eλret(v1,re sin(λimt)+v1,im cos(λimt)), xm+2 = eλret(v2,re sin(λimt)+
v2,im cos(λimt)) ... x2m = eλret(vm,re sin(λimt) + vm,im cos(λimt)). These so-
lutions correspond to initial values of v1,re,v2,re...vm,re,v1,im,v2,im...vm,im re-
spectively. The solutions have spiraling behavior that is similar to case 2.
Case 6: Complex repeated eigenvalues with smaller geometric multiplicities
As in case 4, if v1 = v1,re ± iv1,im, ...vk = vk,re ± ivk,im are eigenvectors for
the complex eigenvalue λre + iλim and form a basis for an eigenspace of dimen-
sion k < m, then k of the solutions are given by x1 = eλtv1, x2 = eλtv2 ...
xk = eλtvk. As before, the generalized eigenvectors u1, . . . , um−k are found by
solving:
(A− λI)u1 = v
(A− λI)u2 = u1

(A− λI)u3 = u2

...
(A− λI)um−k = um−k−1
The solutions have similar spiraling properties to case 5, depending on whether
λre is positive, negative, or 0.

3.1 Phase Changes in Linear Systems

In a family of dynamical systems x′ = f(x, µ), a phase change occurs when a
stable equilibrium point becomes semistable or unstable under continuous vari-
ation of f . Here, we describe the dynamical system as changing with variable
parameter µ.
When the system is linear, we have x′ = A[µ]x, where A is a matrix as a func-
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tion of µ. When the entries of A vary continuously, several types of changes to
the roots of characteristic polynomial can occur, causing changes to the nature
of the fixed point x0 = 0. We denote the polynomial by p[µ](λ) and its roots
by λ0, λ1, etc.
1. λ0 ∈ R: λ0 < 0↔ λ0 > 0. In this case, x0 = 0 may transition from a stable
point to a semistable point, or from a semistable point to an unstable one, or
vice versa. Scalar multiples of v0, where v0 is the eigenvector associated with
λ0, go from being stable initial conditions to unstable ones.
2. λ0...λk ∈ R: λ0...λk < 0↔ λ0...λk > 0. Multiple roots can pass through zero
at the same time. When this happens, a multidimensional space of inputs goes
from stable to unstable.
3. λ0, λ1 ∈ C: Im(λ0) 6= 0;λ1 = λ̄0;Re(λ0) < 0 ↔ Im(λ0) = Im(λ1) =
0;λ0, λ1 < 0. The origin stays a stable point for the appropriate space of initial
conditions, but solutions change from having spiral trajectories to straight ones.
4. λ0, λ1 ∈ C: Im(λ0) 6= 0;λ1 = λ̄0;Re(λ0) < 0↔ Im(λ0) = Im(λ1) = 0;λ0 <
0;λ1 > 0. The same as #3 but spiral solutions become semistable solutions
instead of stable ones.
5. λ0, λ1 ∈ C: Im(λ0) 6= 0;λ1 = λ̄0;Re(λ0) > 0 ↔ Im(λ0) = Im(λ1) =
0;λ0, λ1 > 0. The origin is an unstable point for the appropriate space of initial
conditions, but solutions change from having spiral trajectories to straight ones.
6. λ0, λ1 ∈ C: Im(λ0) 6= 0;λ1 = λ̄0;Re(λ0) > 0↔ Im(λ0) = Im(λ1) = 0;λ0 <
0, λ1 > 0. The same as #5 but spiral solutions become semistable solutions
instead of unstable ones.
7. λ0, λ1 ∈ C: Im(λ0) > 0; Im(λ1) = −Im(λ0);Re(λ0) = Re(λ1) = 0 ↔
Im(λ0) = Im(λ1) = 0;λ0 > 0;λ1 < 0. Solutions in the 2D space of appropriate
initial conditions change from having metastable orbitals around the origin to
semistable trajectories.
If M = R2, the matrix A[µ] describing the system can be written as:

A[µ] =

[
f1,1(µ) f1,2(µ)
f2,1(µ) f2,2(µ)

]
Then, the roots of the equation can be described by two parameters:

p(µ) = −f1,1(µ) + f2,2(µ)

2

q(µ) =
f1,1(µ)2 − 2f1,1(µ)f2,2(µ) + 2f1,2(µ)f2,1(µ) + f2,2(µ)2

4

The possible states of the system listed above correspond to various conditions
on p and q. If q(µ) < 0, then the eigenvalues are complex with real part equal
to p(µ). If q(µ) = 0, then the eigenvalues are both equal to p(µ). If q(µ) > 0,
then the eigenvalues are real and positive if q(µ) < p(µ)2 and p(µ) > 0, real and
negative if q(µ) < p(µ)2 and p(µ) < 0, or real with opposite signs if q(µ) > p(µ)2.
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4 Extension to nonlinear dynamical systems

In a continuous dynamical system defined with a nonlinear function of x, the
rectification theorem guarantees that if f(x0) 6= 0, then the streamlines in the
neighborhood of x0 can be converted into parallel lines using a smooth change
of coordinates. Similarly, where f(x0) = 0, the vectors in the neighborhood
of x0 can be approximated by x′ = J(x − x0), where J = ∂f

∂x is the Jacobian
matrix of f at x = x0.
The properties of the corresponding linear system x′ = Jx are similar to those
of the system x′ = f(x). If x = 0 is a stable equilibrium point in the linear
system (that is, if all eigenvalues of J have negative real part), then x = x0

is a stable equilibrium point in the non-linear system with eigenvector x = v
corresponding to the trajectory of x = x0+v in the non-linear system. Similarly,
if an eigenvalue λ of J has positive real part and corresponding eigenvector v,
then x = x0 + v will be an unstable point in the non-linear system. However,
if an eigenvalue λ is 0 or imaginary, indicating that the eigenvectors v are fixed
points or form stable orbits in the linear system respectively, points x0 + v
may not necessarily undergo the same behavior in the non-linear system. For
example, the system defined by

x′1 = x31 − x2

x′2 = x1 + x32

has Jacobian

J(x) =

[
3x21 −1
1 3x22

]
and fixed point x0 = 0, giving Jacobian

J = J(0) =

[
0 −1
1 0

]
. This matrix has eigenvalues λ0, λ1 = ±i, indicating that the solutions to the
linear system orbit the origin counterclockwise. However, the solutions xc(t) to
the non-linear system spiral farther and farther outward for any value c 6= 0,
and thus, with the exception of x0(t), every solution is unstable.

For other systems, such as the system defined by x′ =

[
x′1
x′2

]
=

[
f1(x)
f2(x)

]
=[

x21 − x2
x1 + x22

]
, there are still periodic orbits, as suggested by the Jacobian matrix,

but with different period varying with distance from the origin.
In the above case, the orbits can be proved to be periodic by considering x′

as a vector field on R2 and noting the symmetry of x′ with respect to the line
x1 = x2. But in general there is no obvious way to tell whether the orbits are
periodic.
In my research, I used a computer program to numerically solve the ODEs of
similar systems to determine whether or not they formed cycles. Focusing on
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systems of the form x′ =

[
x′1
x′2

]
=

[
f(x1)− x2
x1 + g(x2)

]
, I created a program in the

Julia programming language that used a 2nd order Taylor method to plot the
trajectories of points close to the origin. I used numerical differentiation (or
sometimes pre-programmed functions) to calculate the derivatives of f and g.
First, I conjectured that whenever f(x) and g(x) were of the form ax2, where
a was a positive constant that was different for f and g, then all cycles in a
neighborhood of the origin were perfectly stable; they returned to their exact
initial position at some time t > 0. I then extended my conjecture to include the
case where f and g were even polynomials of degree greater than 2. Based on
low-accuracy approximations this conjecture seemed to hold, and in fact when
f = g I could prove that it held. However, unlike in the linear case, the apparent
period of the cycles varied with distance from the origin.
However, upon applying higher approximation, the solutions did not converge
noticeably closer to closed loops. For example, I considered the system x′ =[
x′1
x′2

]
=

[
f(x1)− x2
x1 + g(x2)

]
with f(x) = 0.7x2, g(x) = x2 with initial point

x(0) =

[
0.3
0

]
. The resulting trajectory crossed the positive x-axis for a sec-

ond time at t = 0.662. Although a numerical approximation with ∆t = 0.01
yielded ||x(0.662)− x(0)|| < 0.0025, decreasing the step size to ∆t = 0.001 did
not yield a noticeable decrease in the value ||x(0.662) − x(0)||. As the Taylor
method was expected to converge to the exact solution upon increasing pre-
cision, I concluded that the “cycles” were likely not actually closed loops but
rather spiraled outward by about 0.002 each period.

4.1 Further research

Although conjectures and numerical approximations do not prove anything, they
stimulate further research into dynamical systems. Perhaps somewhere there is
a theorem that answers the questions I address in this paper.
For higher-order dynamical systems, fixed points can be analyzed using normal
form. The normal form of a dynamical system is another dynamical sys-
tem described by a simpler equation that preserves the most important prop-
erties of the original system. If a system can be described by the equation
x′ = Ax + a1(x) + a2(x) + . . . , where A is an n× n matrix and aj(x) is an n-
vector of homogeneous polynomials of degree j+1 whose variables are the entries
of x, then it is possible to introduce a change of variables y′ = u1(y)+u2(y)+. . .
such that the new expression y is in some way simpler than the old one [4].
In four dimensions and above, stable cycles can involve two mutually perpendic-
ular planes with independent elliptical trajectories, and their non-linear approx-
imations. In linear systems, if the eigenvalues have no least common multiple,
the point may never return to its initial position yet it may still be confined to
a submanifold given by the Cartesian product of two ellipses.
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