
Improving Gauss’s Method for Finding Roots of Unity by Finding

Radical Expressions For Arbitrary Members Of The Cyclotomic Field

and Its Extensions

Eric R. Binnendyk
ericabq@gmail.com

May 27, 2020

Abstract

We introduce a new method to find radical expressions for roots of unity; that is, complex numbers that
yield 1 when raised to some integer power. This method yields more compact expressions than previous methods
suggested by Carl Gauss and Andreas Weber. Under a particular metric for the size of a radical expression, we
develop a recursive formula for the size of the expressions for each root of unity. The method involves general-
izing the problem to finding equally compact radical expressions for arbitrary members of the cyclotomic field
(the minimal field, for each n, containing nth roots of unity) and their extensions. We develop an algorithm
to express a value recursively in terms of values from either subfields or field extensions, and show that this
recursion eventually reduces to the field of rationals, yielding a radical expression.

Radical expressions for roots of unity lead to radical expressions for cos(nπ) and sin(nπ) for all rational numbers
n, which can be applied to the geometric construction of regular polygons using a compass, straightedge, and
marked ruler. The theory behind such expressions can also be a pedagogical tool for explaining why certain

trigonometric functions result in simple values (e.g. cos(π/3) = 1
2

and cos(π/5) = 1+
√
5

4
).

1 Introduction and History

The result presented here derives heavily from earlier research.

The study of radical expressions for roots of unity began with Gauss’s discovery of an expression for 17th roots
of unity using only square roots [2]. Gauss went on to prove that all roots of unity could be expressed in radicals
and developed an algorithm to find a radical expression for pth roots of unity whenever p was prime [3]. A similar
method was also developed by Vandermonde [4]. Gauss’s method and the theory behind it lay the basis for our
research.

Later research on improvements to the algorithm was done by Andreas Weber in 1995 [6]. He developed an
improved algorithm for calculating radical expressions that takes advantage of the redundancy of the different sums
of periods that need to be calculated. A similar calculation of the 29th roots of unity was described in a paper
by Lau Jing Feng [7]. However, for large n, the expressions for the nth roots of unity produced by both of these
methods are long and cannot practically be written out in full. They are often presented by using variables to

1

represent auxilliary expressions.

We present a new method, based on Galois theory, that avoids the need to multiply radical expressions directly.
We generalize the problem of finding pth roots of unity, where p is prime, to finding radical expressions for every
member of the pth cyclotomic field (the minimal field containing the pth roots of unity) as well as extensions to this
field formed by adjoining other roots of unity. The resulting algorithm produces radical expressions with a simple
tree-like structure; recursively speaking, they are either rational numbers (base case) or sums of rational numbers
together with radical roots of simpler expressions of the same type. We also develop a formula to determine the
complexity of a radical expression and analyze the complexity of expressions produced by our algorithm compared
to expressions produced by previous algorithms.

2 Preliminaries

2.1 Radical expressions

Let Q[x] be the set of all polynomials with rational coefficients. Let p ∈ Q[x] and let r ∈ C be a particular root
of p. (In other words, r is an algebraic complex number.) A radical expression for r is a particular formula
evaluating to r using only of sums of rational numbers with nth roots of simpler radical expressions, where n can
be any positive integer greater than 1.

Formally, the set R of radical expressions can be defined recursively as follows:

• If expr is a single integer, as a formula, then expr ∈ R.

• If expr ∈ R and n ∈ N, n > 1, then n
√
expr ∈ R for all choices of complex nth root. These choices may be

denoted βj n
√
expr, where j ranges from 0 to n− 1 and β is a primitive nth root of unity (as described below).

By convention, if n = 2, we can write
√
expr instead of 2

√
expr.

• If expr1, expr2 ∈ R, then (expr1) + (expr2), (expr1)− (expr2), (expr1) ∗ (expr2), (expr1)/(expr2) ∈ R. Note
that not all valid expressions correspond to numbers; for example, if expr2 evaluates to 0, then (expr1)/(expr2)
does not have a defined value.

The parentheses in any expression can be removed if they are part of a chain of associative operators, like addition
or multiplication. For example, we can write 3

√
2 + 5
√

4 +
√

6 instead of 3
√

2 + (5
√

4 +
√

6) or (3
√

2 + 5
√

4) +
√

6.

Radical expressions are a more intuitive, constructive way to understand algebraic numbers compared to the tradi-
tional method of describing them as roots of a particular polynomial. However, not all algebraic numbers even have
radical expressions. As proved by Abel in 1824, there is no general formula for the roots of a polynomial of degree
5 or above in terms of radical expressions of the coefficients. In 1830, Galois identified the class of polynomials in
Q[x] whose roots have radical expressions; they are precisely the polynomials whose Galois group is isomorphic to
a product of cyclic groups.

The radical expressions produced by our algorithm belong to a specific subset of the class described above. We call
this the set of radical-sum expressions. This subset R′ can be defined by:

• If expr is an integer, then expr ∈ R′ is a radical expression.

2

• If expr ∈ R′ and n ∈ N, n > 1, then βj n
√
expr ∈ R′ for all j from 0 to n− 1.

• If expr1, expr2 ∈ R′ and n ∈ N, then (expr1) + (expr2), (expr1)− (expr2), (expr1)/(n) ∈ R′.

Every radical-sum expression consists of a sum of one or more rational numbers and values under radicals, possibly

divided by an integer. For example,
√

2,
√

3
2 +1, and

1
3−β

2 3
√

1+
√
−2

3 are all in R′, but
√
3√
2

+1 and
√

2(1+ 3
√

5) are not.

2.2 Roots of unity

For a positive integer n, an nth root of unity ζ is a complex number of the form ζ = e2kπi/n = cos(2kπ/n) +
i sin(2kπ/n) for some integer k. As a consequence of this definition, we have |ζ| = 1, arg ζ = 2πk/n, and ζn = 1. A
primitive nth root of unity requires additionally that k and n be relatively prime. From this definition, a primitive
nth root of unity is not an mth root of unity for any m < n.

If ζ is an nth root of unity, then ζ satisfies the polynomial ζn−1. This polynomial is factorizable as (ζ−1)(
∑n−1
k=0 ζ

k).

Thus, if ζ 6= 1, ζ also satisfies
∑n−1
k=0 ζ

k. A polynomial satisfied uniquely by all primitive nth roots of unity, for
some n, is called a cyclotomic polynomial. If p is prime, then all pth roots of unity besides 1 are primitive. Thus,
the expression

∑p−1
k=0 ζ

k is satisfied by all, and only by, primitive pth roots of unity. It follows that if p is prime, the
previous expression is the pth cyclotomic polynomial.

We know that radical expressions exist for all roots of unity. For example, to get the nth roots of unity, we
can just write βj n

√
1 for all n choices of the complex nth root. However, this expression is not desirable for several

reasons:

1. It describes all nth roots of unity, not just the primitive ones, obtained in the previous expression when k = 0.

2. It is not written in the form a+b
c , where a and c are real and b is pure imaginary.

3. It is described in terms of the n choices of the complex nth root, which only differ from each other by factors
of the nth roots of unity. Depending on the context of evaluation, the expression may be considered a circular
definition.

4. There exist radical expressions for the nth roots of unity using only radicals with degree less than n, as will
be explained below.

An example of an expression that does not have these problems is

e2πi/5 =
−1 +

√
5 +

√
−10− 2

√
5

4

This is an expression for a primitive 5th root of unity as the root of the cyclotomic polynomial x4 +x3 +x2 +x1 +1,
which is satisfied by all four primitive 5th roots of unity. Changing the signs on this expressions yields the other
three primitive 5th roots, but not 1.

e4πi/5 =
−1−

√
5 +

√
−10 + 2

√
5

4

e6πi/5 =
−1−

√
5−

√
−10 + 2

√
5

4

3

e8πi/5 =
−1 +

√
5−

√
−10− 2

√
5

4

As it turns out, every cyclotomic polynomial has a Galois group that can be expressed as a product of cyclic groups.
Thus, nth roots of unity are always expressible by radicals of degree less than n, where different primitive roots can
be found by using different choices of roots. In fact, this existence was known before Galois and was published by
Gauss in Disquisitiones Arithmeticae [1].

2.3 Sums of roots of unity

Consider the field extension Q[ζ] of the rationals extended with a primitive nth root of unity ζ. This is called the

nth cyclotomic field. Any member x of this set can be expressed as x =
∑n−1
j=0 ajζ

j where all aj ∈ Q. We will
simply call this type of expression a sum or sum of roots of unity.

2.3.1 Degree of a sum

Let x ∈ Q[ζ], where ζ is a primitive pth root of unity and p is prime, and let
∑p−1
j=0 ajζ

j be a sum representation of

x. Because p is prime, an integer g with 1 < g < p can be chosen so that 1, g, g2, g3, ..., gp−2 are all distinct values
modulo p. (Due to Fermat’s little theorem, gp−1 mod p = 1 for any value of g not divisible by p.) Such a value g
is called a primitive root modulo p (not to be confused with a primitive root of unity, which is an entirely different
concept). In the following text, we will assume a particular primitive root g has been chosen.

We can talk of the unique field automorphism σ : Q[ζ] → Q[ζ] such that σ(ζ) = ζg, for a particular primitive
root g. Because σ is an automorphism, we have σ(P (ζ)) = P (ζg) for any polynomial P with rational coefficients,

and in particular any sum. Thus, σ(x) =
∑p−1
j=0 ajζ

jg is a sum with the same coefficients as x in a different order.
Because g is a primitive root modulo p, σ is a generator of the Galois group of automorphisms of Q[ζ]. For a
positive integer k that divides p− 1, if σk(x) = x, then we say that x is a sum with degree k.

The set of all sums x with degree k forms a field itself, and so is closed under addition and multiplication.

In fact, sums of pth roots of unity with degree k are roots of degree-k polynomials with rational coefficients.
In particular, any sum of degree 1 is rational itself:

x =

pj−1∑
k=0

(akζ
k) = a0 +

p−1∑
k=1

(a1ζ
k) (because x = σ(x))

= a0 + a1

p−1∑
k=1

ζk

= a0 − a1 (because ζ is a root of

p−1∑
k=0

ζk)

4

2.3.2 Periods

A period, as identified by Gauss, is a special type of sum. A period (f, k) is a sum
∑f−1
m=0 ζ

gdmk, where d = (p−1)/f .

This sum has degree d. Every sum of degree d can be written as a sum of these periods, as follows:
∑d−1
j=0 agj (f, gj)

If x has degree k > 1, some of the coefficients in the sum must be equal: aj = ajgnk mod p where 0 < n < (p− 1)/k.

2.3.3 Example

Let p = 13 and let ζ be any primitive 13th root of unity. It can be shown that g = 2 is a primitive root mod 13
because the values 20, 21, ..., 211 mod 13 are all distinct:

1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7

Then we can define σ by σ(P (ζ)) = P (ζ2) for all rational polynomials P . For example, if

x = 2− ζ + ζ2 + 3ζ4 − ζ8 + ζ3 + 3ζ6 − ζ12 + ζ11 + 3ζ9 − ζ5 + ζ10 + 3ζ7

is a sum with coefficients a0 = 2, a1 = −1, a2 = 1, a3 = 1, a4 = 3... etc., then

σ(x) = 2 + 3ζ − ζ2 + ζ4 + 3ζ8 − ζ3 + ζ6 + 3ζ12 − ζ11 + ζ9 + 3ζ5 − ζ10 + ζ7

σ2(x) = σ(σ(x)) = 2 + ζ + 3ζ2 − ζ4 + ζ8 + 3ζ3 − ζ6 + ζ12 + 3ζ11 − ζ9 + ζ5 + 3ζ10 − ζ7

σ3(x) = 2− ζ + ζ2 + 3ζ4 − ζ8 + ζ3 + 3ζ6 − ζ12 + ζ11 + 3ζ9 − ζ5 + ζ10 + 3ζ7

and we see that σ3(x) = x, so x has degree 3. We also see that some of the coefficients are identical, such as:
−1 = a1, −1 = a1·23 mod 13 = a8, −1 = a1·26 mod 13 = a12, −1 = a1·29 mod 13 = a5.

We also can write x as a sum of periods of degree 3. Because the degree d = 3, we will need to take f = (13−1)/3 = 4:

(4, 20) = ζ + ζ8 + ζ12 + ζ5

(4, 21) = ζ2 + ζ3 + ζ11 + ζ10

(4, 22) = ζ4 + ζ6 + ζ9 + ζ7

x = 2 + (−1) · (4, 20) + 1 · (4, 21) + 3 · (4, 22)

2.4 Multisums (field extensions)

Let p1, p2, ..., pn be distinct primes and let ζ1, ζ2, ..., ζn be primitive roots of unity corresponding to each prime. Let
q = p1p2 . . . pn and let ζ be a primitive qth root of unity. We can express any power of ζ as ζk = ζk11 ζk22 . . . ζknn
where 0 ≤ k1 < p1, 0 ≤ k2 < p2, etc. For any x ∈ Q[ζ], we have

x =
∑

k1,k2,k3,...

(ak1,k2,k3,...(ζ1)k1(ζ2)k2(ζ3)k3 . . .)

5

where kj ranges from 0 to pj−1 and the ak1,k2,k3,... are rational coefficients. We will call this expression a multisum.
For any prime pj ∈ {p1, . . . , pn}, we can rewrite the above expression as follows:

x =

pj−1∑
kj=0

(Akj (ζj)
kj)

where
Akj =

∑
...kj−1,kj+1,...

(ak1,k2,k3......(ζj−1)kj−1(ζj+1)kj+1 . . .)

In other words, each multisum can be written as a single sum over pjth roots of unity, where the coefficients are
multisums over the other primes.

2.5 Degree of a multisum

As with sums, we can identify a primitive root g mod pj and define the automorphism σj by σj(P (ζj)) = P (ζgj),
where P is a polynomial whose coefficients are in the field of q/pjth roots of unity. Then the multisum can be said
to have a degree of d with respect to pj if σj

d(x) = x and d divides pj − 1.

The entire degree of the multisum can be given by a tuple (d1, d2, . . . , dn), where dk is the degree with respect
to pk.

Note that when x has a degree of 1 with respect to pj , it is actually in the field of q/pjth roots of unity:

x =

pj−1∑
k=0

(Ak(ζj)
k) = A0 +

pj−1∑
k=1

A1(ζj)
k (by symmetry)

= A0 +A1

pj−1∑
k=1

(ζj)
k

= A0 +A1 · (−1)

= A0 −A1

3 Gauss’s method

Gauss’s original method to find an expression for ζ, a pth root of unity (with g being a primitive root mod p),
involved finding expressions for the periods (f, gk) (k from 0 to dc − 1) given expressions for the periods (fc, gk)
(k from 0 to d − 1), where p − 1 = efc and c is prime. Starting with the fact that (p − 1, 1) = −1, Gauss’s
method chooses prime factors c of p− 1 one by one and applies the method iteratively to find expressions for peri-
ods of increasing degrees until reaching (1, gk) (k from 0 to p−2), which are just the p−1 primitive pth roots of unity.

In the iteration step, Gauss finds expressions for the cycles (f, gk) in terms of the cycles (fc, gj) and cth roots
of unity. Because c < p, we can assume that expressions for the cth roots of unity have already been found. In the
below calculation, β is a primitive cth root of unity and k is a particular integer from 0 to d− 1.

6

Let sj =
∑c−1
m=0 β

jm(f, gk+dm) for j from 0 to c − 1. (The values s0, s1, . . . , sc−1 are the discrete Fourier trans-
form of the values (f, gk), (f, gk+d), . . . , (f, gk+(c−1)d).) Then s0 = (fc, gk). Let tj = scj for j from 1 to c − 1.
Both the sj and tj values are multisums in the field of pcth roots of unity. It can be shown that the tj values have

a degree of d with respect to p. Thus, we have tj = A+
∑d−1
m=0Am(fc, gm), where A and the Am are in the field Q[β].

Once we can express the tj in terms of degree-d cycles and cth roots of unity, we have sj = βk c
√
tj for j from

1 to c − 1, for particular choices of the complex cth root as given by the value of k. (The choice of each root, as
given by the complex argument of sj , can be found by numerically evaluating the sj values from the sums.) Then

we can use the inverse discrete Fourier transform to obtain (f, gk+dj) = 1
c

∑c−1
m=0 β

−jmsm for j from 0 to c − 1.
Repeating this procedure for all k from 0 to d− 1, we now have radical expressions for all degree-dc periods (f, gj)
in terms of degree-d periods (fc, gj).

3.1 Example: 11th roots of unity

To find radical expressions for the 11th roots of unity, we start with g = 2, a primitive root mod 11. For our primitive
root of unity, we choose ζ = e2πi/11, which has an argument of 2π/11 radians. We start with the degree-one period

(p− 1, g0) = (10, 1) = −1

whose value −1 can be determined by the minimal polynomial for ζ.

Now we need to choose a prime factor c of p − 1 = 10 and compute ((p − 1)/c, gj) for j from 0 to c − 1. For

this step, choosing c = 5 is usually preferred because it will give us an expression for (2, gj) = 2<ζgj , which as we

will see yields an expression for ζg
j

with separated real and imaginary parts.

We have d = 1, c = 5, f = 2, so we are looking for radical expressions for:

(2, g0) = ζ + ζ10

(2, g1) = ζ2 + ζ9

(2, g2) = ζ4 + ζ7

(2, g3) = ζ8 + ζ3

(2, g4) = ζ5 + ζ6

We let β = e2πi/5, a primitive 5th root of unity. Now we compute s0, s1, s2, s3, s4 via the Fourier transform:

As mentioned above, s0 = (fc, g0) = −1:

s0 = (2, g0) + (2, g1) + (2, g2) + (2, g3) + (2, g4)

=

10∑
m=1

ζm = (10, 1) = −1

For s1 through s4, we have the following multisums:

s1 = (2, g0) + β(2, g1) + β2(2, g2) + β3(2, g3) + β4(2, g4)

7

= ζ + βζ2 + β2ζ4 + β3ζ8 + β4ζ5 + ζ10 + βζ9 + β2ζ7 + β3ζ3 + β4ζ6

s2 = (2, g0) + β2(2, g1) + β4(2, g2) + β(2, g3) + β3(2, g4)

s3 = (2, g0) + β3(2, g1) + β(2, g2) + β4(2, g3) + β2(2, g4)

s4 = (2, g0) + β4(2, g1) + β3(2, g2) + β2(2, g3) + β(2, g4)

We can find the multisum for t1 = s51 by doing algebra on the s1 multisum (multisums for t2, t3, t4 can be found in
the same manner):

t1 = (ζ + βζ2 + β2ζ4 + β3ζ8 + β4ζ5 + ζ10 + βζ9 + β2ζ7 + β3ζ3 + β4ζ6)5

= . . .

= (1640 + 1700β + 2050β2 + 1800β3 + 1900β4) + (1836 + 1830β + 1795β2 + 1820β3 + 1810β4)

10∑
m=1

ζm

= (1640 + 1700β + 2050β2 + 1800β3 + 1900β4) + (1836 + 1830β + 1795β2 + 1820β3 + 1810β4) · (10, 1)

Thus we see that t1 is a multisum of degree 10 with respect to ζ, and can be expressed in terms of degree-1 cycles
with coefficients in Q[β]. We substitute the previously calculated value (10, 1) = −1 and get

t1 = 196− 130β + 255β2 − 20β3 + 90β4

Finally, we substitute in radical expressions for the 5th roots of unity, which may also be computed by Gauss’s
method:

β =
−1 +

√
5 +

√
−10− 2

√
5

4

β2 =
−1−

√
5 +

√
−10 + 2

√
5

4

β3 =
−1−

√
5−

√
−10 + 2

√
5

4

β4 =
−1 +

√
5−

√
−10− 2

√
5

4

Using algebraic manipulations of radical expressions, this substitution yields:

t1 =
−979− 275

√
5− 220

√
−10− 2

√
5 + 275

√
−10 + 2

√
5

4

Expressions for t2, t3, and t4 can be found in the same manner:

t2 =
−979 + 275

√
5− 220

√
−10 + 2

√
5− 275

√
−10− 2

√
5

4

t3 =
−979 + 275

√
5 + 220

√
−10 + 2

√
5 + 275

√
−10− 2

√
5

4

t4 =
−979− 275

√
5 + 220

√
−10− 2

√
5− 275

√
−10 + 2

√
5

4

8

From which we obtain radical expressions for s1, s2, s3, and s4:

s1 =
5

√
−979− 275

√
5− 220

√
−10− 2

√
5 + 275

√
−10 + 2

√
5

4

s2 = β4
5

√
−979 + 275

√
5− 220

√
−10 + 2

√
5− 275

√
−10− 2

√
5

4

s3 = β
5

√
−979 + 275

√
5 + 220

√
−10 + 2

√
5 + 275

√
−10− 2

√
5

4

s4 =
5

√
−979− 275

√
5 + 220

√
−10− 2

√
5− 275

√
−10 + 2

√
5

4

In these expressions, 5
√
tj is the unique choice of complex 5th root with an argument in [−π/5, π/5). (This choice

is called the principal 5th root.) To obtain other choices of 5th root the expression is multiplied by a power of β.
One can numerically evaluate the argument of s1, s2, s3, and s4 given their definitions above in terms of periods,
to find the correct choice of 5th root.

Using the inverse discrete Fourier transform, we obtain radical expressions for (2, g0) through (2, g4):

(2, g0) =
s0 + s1 + s2 + s3 + s4

5
=
−1 + s1 + s2 + s3 + s4

5

(2, g1) =
−1 + β4s1 + β3s2 + β2s3 + βs4

5

(2, g2) =
−1 + β3s1 + βs2 + β4s3 + β2s4

5

(2, g3) =
−1 + β2s1 + β4s2 + βs3 + β3s4

5

(2, g4) =
−1 + βs1 + β2s2 + β3s3 + β4s4

5

Note that although s1 through s4 are complex numbers with nonzero imaginary parts, the values of (2, g0) through
(2, g4) are real. In fact, from Euler’s formula, we have (2, k) = 2 cos(2kπ/11).

Now that we have radical expressions for the periods of degree 5, we need expressions for the periods of degree 10,
which are individual roots of unity.

Taking d = 5, c = 2, f = 1, we see that we are looking for radical expressions for:

(1, g0) = ζ, (1, g1) = ζ2, (1, g2) = ζ4, (1, g3) = ζ8, (1, g4) = ζ5

(1, g5) = ζ10, (1, g6) = ζ9, (1, g7) = ζ7, (1, g8) = ζ3, (1, g9) = ζ6

Proceeding as before, we find the Fourier transform of each pair (1, gk), (1, gk+d) for k from 0 to d − 1. Because
d = 5, this produces 5 transforms featuring all 10 periods. Note that the discrete Fourier transform of a pair of

9

values a, b gives a+ b, a− b.

We start with (1, g0), (1, g5) and call the transformed values s0,0, s0,1:

s0,0 = (1, g0) + (1, g5) = ζ + ζ10

s0,1 = (1, g0)− (1, g5) = ζ − ζ10

For (1, g1), (1, g6):
s1,0 = ζ2 + ζ9

s1,1 = ζ2 − ζ9

Similarly, we derive the values s2,0, s2,1, s3,0, s3,1, s4,0, s4,1 from the other three pairs.

We know sk,0 = (2, gk), but we need to calculate sk,1 via tk,1 := s2k,1:

t0,1 = −2 + ζ2 + ζ9 = −2 + (2, g1)

t1,1 = −2 + ζ4 + ζ7 = −2 + (2, g2)

t2,1 = −2 + ζ3 + ζ8 = −2 + (2, g3)

t3,1 = −2 + ζ5 + ζ6 = −2 + (2, g4)

t4,1 = −2 + ζ + ζ10 = −2 + (2, g0)

As expected, each tk,1 can be expressed as a sum A +
∑d−1
m=0Am(fc, gm), where A and the Am values are field Q

adjoined by a primitive 2nd root of unity. However, because the only primitive 2nd root of unity is −1, which is
already in Q, the values of A and Am are rational.

We then have the following expressions, which can be expanded into full radical expressions by substituting expres-
sions for sk and β:

t0,1 =
−11 + β4s1 + β3s2 + β2s3 + βs4

5

t1,1 =
−11 + β3s1 + βs2 + β4s3 + β2s4

5

t2,1 =
−11 + β2s1 + β4s2 + βs3 + β3s4

5

t3,1 =
−11 + βs1 + β2s2 + β3s3 + β4s4

5

t4,1 =
−11 + s1 + s2 + s3 + s4

5

Continuing as we did for t0 through t4, we then find radical expressions for sk,1 by finding the correct sign of the
square root, which is positive in all cases but one:

s0,1 =

√
−55 + 5β4s1 + 5β3s2 + 5β2s3 + 5βs4

5

10

s1,1 =

√
−55 + 5β3s1 + 5βs2 + 5β4s3 + 5β2s4

5

s2,1 =

√
−55 + 5β2s1 + 5β4s2 + 5βs3 + 5β3s4

5

s3,1 = −
√
−55 + 5βs1 + 5β2s2 + 5β3s3 + 5β4s4

5

s4,1 =

√
−55 + 5s1 + 5s2 + 5s3 + 5s4

5

As it happens, the s values are all pure imaginary. In fact, sk,1 = 2i sin(2gkπ/11).

Now we take the inverse discrete Fourier transform to find radical expressions for the periods:

(1, g0) =
s0,0 + s0,1

2

(1, g5) =
s0,0 − s0,1

2

(1, g1) =
s1,0 + s1,1

2

(1, g6) =
s1,0 − s1,1

2

(1, g2) =
s2,0 + s2,1

2

etc.

We now have radical expressions for all 10 primitive 11th roots of unity. If the radical expression for ζ were
written out in full, it would look like (after finding a common denominator of 10):

−1 + 5
√

(...t1...) + β4 5
√

(...t2...) + β 5
√

(...t3...) + 5
√

(...t4...)

+
√
−55 + 5β4 5

√
(...t1...) + 5β2 5

√
(...t2...) + 5β3 5

√
(...t3...) + 5β 5

√
(...t4...)

10

where β = e2πi/5, and (...t1...) through (...t4...) are the expressions for t1 through t4 found above.

4 Weber’s improvement

Weber realized that Gauss’s algorithm could be sped up because many parts were redundant; for any given value
of k from 1 to e − 1, instead of recomputing the sum expressions for the tm[k] = sm[k]c values in the Fourier
transform of the (f, gk+dm), we could simply take the sums tm[0] from the transform (f, gdm) and replace (fc, gj)
with (fc, gj+k) = σ((fc, gj)) to get σk(tm[0]) = tm[k]. This works because σk((f, gdm)) = (f, gk+dm) for each k
and the isomorphism σ is preserved through application of the Fourier transform and the cth power.

11

5 Our algorithm

The main difference in our algorithm is how the subproblem of finding an expression for a given sum is broken into
subsubproblems. Previous algorithms evaluated a multisum of degree dc by expressing it in terms of periods of
degree dc, which then get expressed in terms of multisums of degree d via a Fourier transform. Instead of working
on a single period, our algorithm applies the Fourier transform directly to the multisums.

Starting with a multisum m of [p1, p2, ..., p]th roots of unity of degree [d1, d2, ..., dc] (where p − 1 = dcf and c
is prime), we construct expressions for σkd(m) for k from 1 to c, where σ is the automorphism ζ → ζg. Taking
the discrete Fourier transform of these c values produces a set of values which we can call s0, s1, . . . sc−1 as above,
where s0 is a multisum of [p1, p2, ..., p]th roots of unity and s1 through sc−1 are multisums of [p1, p2, ..., p, c]th roots
of unity. Then the multisums s1

c through sc−1
c are computed. It can be shown that s0 is a multisum of degree

[d1, d2, ..., d] while s1
c through sc−1

c are multisums of degree [d1, d2, ..., d, c− 1]. Thus, we can express a multisum
of degree [d1, d2, ..., dc] as a radical expression in terms of multisums of degrees [d1, d2, ..., d] and [d1, d2, ..., d, c− 1]
(which, if c = 2, becomes a radical expression only in terms of multisums of degree [d1, d2, ..., d].) In this way,
we can start with an unevaluated pth root of unity as a degree-[p − 1] multisum and call the algorithm recur-
sively to produce sums of degree [(p − 1)/2], and [(p − 1)/2, 1] (= [(p − 1)/2]), then sums of degree [(p − 1)/(2c)]
and [(p − 1)/(2c), c − 1], then sums of degree [(p − 1)/(2c), (c − 1)/2], etc. until we reach multisums of degree
[1], which are just rational numbers, at which point we have an entire radical expression. These rational numbers
are the base case of the recursion. Is this base case always reached? We claim that it is, and we will prove this below.

Note that we cannot start with degree-1 sums as Gauss did, because we do not know which sums will be needed to
express the higher-degree multisums. Each new multisum must be generated on-the-fly because its value will not
be known in advance.

5.1 Proof that our method terminates

To prove that our method always reaches the base case, we associate each multisum with an ordinal as follows:

Let m be a multisum of [p1, . . . , pn]th roots of unity with degrees [d1, . . . , dn], where p1 through pn are in de-
scending order. Then m is associated the ordinal ωp1d1 + · · ·+ ωpndn.

Our method involves expressing a multisum m of [p1, p2, ..., p]th roots of unity of degree [d1, d2, ..., dc] in terms
of multisums s0 is a multisum of [p1, p2, ..., p]th roots of unity of degree [d1, d2, ..., d] and sj of [p1, p2, ..., p, c]th roots
of unity of degree [d1, d2, ..., d, c − 1]. We see that s0 and sj correspond to smaller ordinals than m corresponds
to. We also see that the ordinal is reduced by rewriting a multisum of [p1, . . . , pn−1, pn]th roots of unity of degree
[d1, . . . , dn−1, 1] as a multisum of [p1, . . . , pn−1]th roots of unity of degree [d1, . . . , dn−1]. Finally, in the base case
when the multisum is a rational number, the corresponding ordinal is 0.
Thus, the entire process can be modeled by a tree of ordinals where any node has at most two children which are
associated with smaller ordinals than the node itself. By the well-ordering principle, this tree must necessarily be
finite. Thus, the recursion always reaches the base case in a finite number of steps.

12

5.2 Example 1: Degrees of multisums used in calculation of 11th roots of unity
(p = 11)

A primitive 11th root of unity is a sum of 11th roots of unity of degree [10].

We choose the prime factors c of p − 1 in the order 2, 5. Note that these factors can be chosen in any order,
but choosing c = 2 first yields two separate expressions for the real and imaginary part of ζ, the 11th root of unity.

We choose c = 2 and reduce the problem to finding an expression for:

• A sum of 11th roots of degree 5

• A multisum of [11, 2]th roots of degree [5, 1]

– Because the 2nd roots of unity are 1 and −1, this is equal to a second sum of 11th roots of unity of
degree 5.

For each sum of 11th roots of unity of degree 5, we choose c = 5 and find expressions for:

• A sum of 11th roots of unity of degree 1

– This is a rational number and its value can be found using the identity
∑10
j=1 ζ

j = −1.

• A multisum of [11, 5]th roots of unity of degree [1, 4]

– This is equal to a sum of 5th roots of unity of degree 4

For each sum of 5th roots of unity of degree 4, we choose c = 2 and find expressions for:

• A sum of 5th roots of unity of degree 2

• A multisum of [5, 2]th roots of unity of degree [2, 1]

– This is equal to a sum of 5th roots of unity of degree 2

For each sum of 5th roots of unity of degree 2, we choose c = 2 and find expressions for:

• A sum of 5th roots of unity of degree 1

– This is a rational number

• A multisum of [5, 2]th roots of unity of degree [1, 1]

– This is also a rational number

Because all sums and multisums have been expressed in terms of rational numbers, we are at the end of the evalu-
ation process.

13

5.3 Example 2: Degrees of multisums used in calculation of 53rd roots of unity
(p = 53)

A primitive 53rd root of unity is a sum of 53rd roots of unity of degree 52.

For this example, we choose the prime factors c of p− 1 in the order 2, 13, 2.

First we choose c = 2 and reduce the problem to finding an expression for:

• A sum of 53rd roots of degree 26

• A multisum of [53, 2]th roots of degree [26, 1]

– This is equal to another sum of 53rd roots of unity of degree 26.

For each sum of 53rd roots of unity of degree 26, we choose c = 13 and find expressions for:

• A sum of 53rd roots of unity of degree 2

• A multisum of [53, 13]th roots of unity of degree [2, 12]

For each sum of 53rd roots of unity of degree 2, we choose c = 2 and find expressions for:

• A sum of 53rd roots of unity of degree 1

– This is a rational number

• A multisum of [53, 2]th roots of unity of degree [1, 1]

– This is also a rational number

For each multisum of [53, 13]th roots of unity of degree [2, 12], we choose c = 2 and find expressions for:

• A multisum of [53, 13]th roots of unity of degree [2, 6]

• A multisum of [53, 13, 2]th roots of unity of degree [2, 6, 1]

– This is equal to another multisum of [53, 13]th roots of unity of degree [2, 6]

For each multisum of [53, 13]th roots of unity of degree [2, 6], we choose c = 3 and find expressions for:

• A multisum of [53, 13]th roots of unity of degree [2, 2]

• A multisum of [53, 13, 3]th roots of unity of degree [2, 2, 2]

For each multisum of [53, 13]th roots of unity of degree [2, 2], we choose c = 2 and find expressions for:

• A multisum of [53, 13]th roots of unity of degree [2, 1]

– This is equal to a sum of 53rd roots of unity of degree 2 (for which we can apply the rules described
above).

• A multisum of [53, 13, 2]th roots of unity of degree [2, 1, 1]

– This is also equal to a sum of 53rd roots of unity of degree 2.

14

For each multisum of [53, 13, 3]th roots of unity of degree [2, 2, 2], we choose c = 2 and find expressions for:

• A multisum of [53, 13, 3]th roots of unity of degree [2, 2, 1]

– This is equal to a multisum of [53, 13]th roots of unity of degree [2, 2].

• A multisum of [53, 13, 3, 2]th roots of unity of degree [2, 2, 1, 1]

– This is equal to another multisum of [53, 13]th roots of unity of degree [2, 2].

We have now covered the methods to evaluate all the sums and multisums in the calculation of 53rd roots of unity.

5.4 Worked example: calculating the 11th roots of unity

An 11th root of unity ζ is a sum of degree 10. We let c = 2 and d = 5.

Let σ : Q[ζ]→ Q[ζ] be the automorphism replacing ζ with ζ2.

We apply the discrete Fourier transform to the values ζ and σ5(ζ) = ζ10:

s0 := ζ + σ5(ζ) = ζ + ζ10

s1 := ζ − σ5(ζ) = ζ − ζ10

Next we compute s1
c using algebra:

s1
c = s1

2 = −2 + ζ2 + ζ9

Radical expression for s0

The value s0 is a degree-5 sum of 11th roots of unity. We let c = 5 and d = 1.

Let η = e2πi/5 be a primitive 5th root of unity. Apply the discrete Fourier transform to the values
s0, σ(s0), σ2(s0), σ3(s0), σ4(s0):

t0 := s0 + σ(s0) + σ2(s0) + σ3(s0) + σ4(s0) =

10∑
j=1

ζj = −1

t1 := s0+ησ(s0)+η2σ2(s0)+η3σ3(s0)+η4σ4(s0) = ζ+ζ10+ζ2η+ζ9η+ζ4η2+ζ7η2+ζ3η3+ζ8η3+ζ5η4+ζ6η4

t2 := s0+η2σ(s0)+η4σ2(s0)+ησ3(s0)+η3σ4(s0) = ζ+ζ10+ζ2η2+ζ9η2+ζ4η4+ζ7η4+ζ3η+ζ8η+ζ5η3+ζ6η3

t3 := s0+η3σ(s0)+ησ2(s0)+η4σ3(s0)+η2σ4(s0) = ζ+ζ10+ζ2η3+ζ9η3+ζ4η+ζ7η+ζ3η4+ζ8η4+ζ5η2+ζ6η2

t4 := s0+η4σ(s0)+η3σ2(s0)+η2σ3(s0)+ησ4(s0) = ζ+ζ10+ζ2η4+ζ9η4+ζ4η3+ζ7η3+ζ3η2+ζ8η2+ζ5η+ζ6η

We see that t0 is a sum of degree 1 and is therefore rational (equal to −1).

Find t1
5 through t4

5:

t1
5 = (1640 + 1700η + 2050η2 + 1800η3 + 1900η4) + (1836 + 1830η + 1795η2 + 1820η3 + 1810η4)

10∑
j=1

ζj

15

= −196− 130η + 255η2 − 20η3 + 90η4

t2
5 = (1640 + 1800η + 1700η2 + 1900η3 + 2050η4) + (1836 + 1820η + 1830η2 + 1810η3 + 1795η4)

10∑
j=1

ζj

= −196− 20η − 130η2 + 90η3 + 255η4

t3
5 = (1640 + 2050η + 1900η2 + 1700η3 + 1800η4) + (1836 + 1795η + 1810η2 + 1830η3 + 1820η4)

10∑
j=1

ζj

= −196 + 255η + 90η2 − 130η3 − 20η4

t4
5 = (1640 + 1900η + 1800η2 + 2050η3 + 1700η4) + (1836 + 1810η + 1820η2 + 1795η3 + 1830η4)

10∑
j=1

ζj

= −196 + 90η − 20η2 + 255η3 − 130η4

Radical expression for t1
5

The value t1
5 is a degree-4 sum of 5th roots of unity. We let c = 2 and d = 2.

Let ρ : Q[η]→ Q[η] be the automorphism replacing η with η2.

Apply the discrete Fourier transform to the values t1
5 and ρ2(t1

5):

v0 := t1
5 + ρ2(t1

5) = −392− 40η + 235η2 + 235η3 − 40η4

v1 := t1
5 − ρ2(t1

5) = −220η + 275η2 − 275η3 + 220η4

Find v1
2:

v1
2 = −248050 + 196625η − 72600η2 − 72600η3 + 196625η4

Radical expression for v0

The value v0 is a degree-2 sum of 5th roots of unity. We let c = 2 and d = 1.

Apply the discrete Fourier transform to the values v0 and ρ(v0):

v0 + ρ(v0) = −784 + 195

4∑
j=0

ηj = −979

v0 − ρ(v0) = −275η + 275η2 + 275η3 − 275η4

Find (v0 − ρ(v0))2:

(v0 − ρ(v0))2 = −378125

4∑
j=0

ηj = 378125

16

Thus, we have v0 = −979−
√
378125

2 = −979−275
√
5

2 .

Radical expression for v1
2

The value v1
2 is a degree-2 sum of 5th roots of unity. We let c = 2 and d = 1.

Apply the discrete Fourier transform to the values v1
2 and ρ(v1

2):

v1
2 + ρ(v1

2) = −496100 + 124025

4∑
j=0

ηj = −620125

v1
2 − ρ(v1

2) = 269225η − 269225η2 − 269225η3 + 269225η4

Find (v1
2 − ρ(v1

2))2:

(v1
2 − ρ(v1

2))2 = −362410503125
4∑
j=0

ηj = 362410503125

Thus, we have v1
2 = −620125+

√
362410503125
2 = −620125+269225

√
5

2 and v1 = −55
√
−410+178

√
5

2 .

Thus, we have t1
5 = v0+v1

2 = −979−275
√
5−55
√
−410+178

√
5

4 and t1 = η
5

√
−979−275

√
5−55
√
−410+178

√
5

4 .

Using the same methods, we can find:

t2 = η
5

√
−979 + 275

√
5− 55

√
−410− 178

√
5

4

t3 = η4
5

√
−979 + 275

√
5 + 55

√
−410− 178

√
5

4

t4 = η4
5

√
−979− 275

√
5 + 55

√
−410 + 178

√
5

4

Thus, we have s0 = −1+t1+t2+t3+t4
5 , which we can expand into a full radical expression using the values above.

Radical expression for s1
2

The value s1
2 is also a degree-5 sum of 11th roots of unity. We let c = 5 and d = 1.

Apply the discrete Fourier transform to the values s1
2, σ(s1

2), σ2(s1
2), σ3(s1

2), σ4(s1
2):

u0 := s1
2 + σ(s1

2) + σ2(s1
2) + σ3(s1

2) + σ4(s1
2) = −10 +

1∑
j=1

0ζj = −11

u1 := s1
2 + ησ(s1

2) + η2σ2(s1
2) + η3σ3(s1

2) + η4σ4(s1
2)

17

= −2 + ζ2 + ζ9 − 2η + ζ4η + ζ7η − 2η2 + ζ3η2 + ζ8η2 − 2η3 + ζ5η3 + ζ6η3 − 2η4 + ζη4 + ζ10η4

u2 := s1
2 + η2σ(s1

2) + η4σ2(s1
2) + ησ3(s1

2) + η3σ4(s1
2)

= −2 + ζ2 + ζ9 − 2η + ζ5η + ζ6η − 2η2 + ζ4η2 + ζ7η2 − 2η3 + ζη3 + ζ10η3 − 2η4 + ζ3η4 + ζ8η4

u3 := s1
2 + η3σ(s1

2) + ησ2(s1
2) + η4σ3(s1

2) + η2σ4(s1
2)

= −2 + ζ2 + ζ9 − 2η + ζ3η + ζ8η − 2η2 + ζη2 + ζ10η2 − 2η3 + ζ4η3 + ζ7η3 − 2η4 + ζ5η4 + ζ6η4

u4 := s1
2 + η4σ(s1

2) + η3σ2(s1
2) + η2σ3(s1

2) + ησ4(s1
2)

= −2 + ζ2 + ζ9 − 2η + ζη + ζ10η − 2η2 + ζ5η2 + ζ6η2 − 2η3 + ζ3η3 + ζ8η3 − 2η4 + ζ4η4 + ζ7η4

We see that u0 is a sum of degree 1 and is therefore rational (equal to −11).

Find u1
5 through u4

5:

u1
5 = (−29460− 29400η− 29050η2− 29300η3− 29200η4) + (2946 + 2940η+ 2905η2 + 2930η3 + 2920η4)

10∑
j=1

ζj

= −32406− 32340η − 31955η2 − 32230η3 − 32120η4

u2
5 = (−29460− 29300η− 29400η2− 29200η3− 29050η4) + (2946 + 2930η+ 2940η2 + 2920η3 + 2905η4)

10∑
j=1

ζj

= −32406− 32230η − 32340η2 − 32120η3 − 31955η4

u3
5 = (−29460− 29050η− 29200η2− 29400η3− 29300η4) + (2946 + 2905η+ 2920η2 + 2940η3 + 2930η4)

10∑
j=1

ζj

= −32406− 31955η − 32120η2 − 32340η3 − 32230η4

u4
5 = (−29460− 29200η− 29300η2− 29050η3− 29400η4) + (2946 + 2905η+ 2920η2 + 2940η3 + 2930η4)

10∑
j=1

ζj

= −32406− 32120η − 32230η2 − 31955η3 − 32340η4

Radical expression for u1
5

The value u1
5 is a degree-4 sum of 5th roots of unity. We let c = 2 and d = 2.

Apply the discrete Fourier transform to the values u1
5 and ρ2(u1

5):

w0 := u1
5 + ρ2(u1

5) = −64812− 64460η − 64185η2 − 64185η3 − 64460η4

w1 := u1
5 − ρ2(u1

5) = −220η + 275η2 − 275η3 + 220η4

Find w1
2:

w1
2 = −248050 + 196625η − 72600η2 − 72600η3 + 196625η4

18

The value w0 is a degree-2 sum of 5th roots of unity. We let c = 2 and d = 1.

Apply the discrete Fourier transform to the values w0 and ρ(w0):

w0 + ρ(w0) = −129624− 128645

4∑
j=0

ηj = −979

w0 − ρ(w0) = −275η + 275η2 + 275η3 − 275η4

Find (w0 − ρ(w0))2:

(w0 − ρ(w0))2 = −378125

4∑
j=0

ηj = 378125

Thus, we have w0 = −979−
√
378125

2 = −979−275
√
5

2

Radical expression for w1

Comparing the formula for w1 with that of v1, we see that w1 = v1 = −55
√
−410+178

√
5

2 .

Thus, we have u1
5 = w0+w1

2 = −979−275
√
5−55
√
−410+178

√
5

4 and u1 =
5

√
−979−275

√
5−55
√
−410+178

√
5

4 .

Using the same methods, we can find:

u2 = η4
5

√
−979 + 275

√
5− 55

√
−410− 178

√
5

4

u3 = η
5

√
−979 + 275

√
5 + 55

√
−410− 178

√
5

4

u4 =
5

√
−979− 275

√
5 + 55

√
−410 + 178

√
5

4

We see that tj
5 = uj

5 for j from 1 to 4, and uj = η−jtj

Thus, we have s1 =
√
−11+η4t1+η3t2+η2t3+ηt4

5 , which we can expand into a full radical expression using the values

above.

Finally, we can combine the expressions for s0 and s1 to obtain a full radical expression for ζ = s0+s1
2 .

If the radical expression for ζ were written out in full, it would look like:

−1 + η 5
√
t1

5 + η 5
√
t2

5 + η4 5
√
t3

5 + η4 5
√
t4

5 +

√
−55 + 5 5

√
t1

5 + 5η4 5
√
t2

5 + 5η 5
√
t3

5 + 5 5
√
t4

5

10

with t1
5 through t4

5 replaced by their corresponding radical expressions.

19

Comparing this with the result found by Gauss’s method, we see that it takes the same form consisting of a
sum of four 5th roots, and then another sum, under a square root, of four 5th roots using the same radicands but
different choices of root. The only difference is that the expression under the radicals has changed. Using Gauss’s
method, this expression was:

−979±a 275
√

5±b (220
√
−10±a 2

√
5±a 275

√
−10∓a 2

√
5)

4

The expression that we obtain is:

−979±a 275
√

5±b 55
√
−410∓a 178

√
5

4

Here, the ±a,b represent two independent choices of sign producing four possibilities. These two expressions can

be shown to be equal in each of these four cases by algebraically expanding the squares of 220
√
−10±a 2

√
5 ±a

275
√
−10∓a 2

√
5 and 55

√
−410∓a 178

√
5. The process of squaring, simplifying, and taking the square root is a

well-known technique for radical simplification. However, our method is more powerful than this simple technique
because it also allows for the simplification of sums of cube roots and higher.

6 Radical expression complexity metric

When studying the radical expressions produced by the nth roots of unity, we developed a simple formula that
models the complexity of any radical-sum expression:

Let R′ be the set of radical-sum expressions.

• If expr is an integer, then size(expr) = 1.

• For any expr ∈ R′, m ∈ z, n ∈ N with n > 1, and j ∈ {0, . . . , n− 1}, size(expr) = size(zβj n
√

(expr)).

• For any expr1, expr2 ∈ R′, size((expr1) + (expr2)) = size((expr1)− (expr2)) = size(expr1) + size(expr2).

• For any expr ∈ R′ and n ∈ N, size((expr)/(n)) = size(expr).

Let p be prime. It follows from the above definition that the complexity of the radical expression for any degree-d
sum of primitive pth roots of unity calculated via our algorithm is given by f(p, d), where:

f(p, 1) = 1

f(p, n) = f(p, n/c) · (1 + f(c, c− 1) · (c− 1))

Here, c is any prime factor of n. Due to the uniqueness of prime factoring, the final value of f(p, n) is independent
of which prime factor is chosen.

In particular, the complexity of the radical expression for any primitive pth root of unity is given by f(p, p− 1).

We wrote a Python program to find radical expressions for roots of unity using Weber’s method and expand

20

out products to form radical-sum expressions. We also wrote code to obtain the length of each of the result-
ing expressions. The code is available at https://github.com/ericbinnendyk/roots_of_unity/ in the files
unrefined_nth_roots_improvement_test.py and expr_metrics.py. We compared the size of each expression to
the size of the expression for the same value produced using our own method using our formula:

p Size using Gauss/Weber method Size using our method (from formula)
2 1 1
3 2 2
5 4 4
7 10 10
11 50 34
13 16 20
17 20 16
19 178 50
23 6410 682
29 920 244
31 1282 170
37 420 100
41 296 136
43 N/A 610
47 N/A 30010
53 4726 964
59 N/A 13666
61 3444 340
67 N/A 3410
73 1636 200
97 904 160
193 4172 320
257 4196 256

7 Pseudocode

Here is pseudocode for evaluating a multisum to radicals using our algorithm. A Python implementation of this algo-
rithm is also available at https://github.com/ericbinnendyk/roots_of_unity/ in the file refined_nth_roots.py.

Auxilliary functions used in code:

len(a): returns the length of a 1-dimensional array

factorize(n): returns the prime factors of integer n in an array

max(a): returns the maximum element of an array

primitive_root(p): returns a primitive root modulo the prime p

sigma(A, index , g): returns a multisum which is the image of multisum A

under the automorphism (zeta) -> (zeta)^g, where zeta is the root of

unity described by the index -th dimension in A

a.insert(index , n): inserts element n into array at index i

epsilon - a very small positive real floating -point number

sum(a) - returns the sum of elements in array

gcd(a) - returns the GCD of all elements in array

21

https://github.com/ericbinnendyk/roots_of_unity/
https://github.com/ericbinnendyk/roots_of_unity/

multisum_power(A, n): returns a multisum equal to A^n, where A is a

multisum

radical_root(n, expr): returns a radical expression for the nth root of

expr , with attribute root_choice for the choice of complex nth root

evaluate(expr): evaluates expr to a complex floating -point value , where

expr can be a radical expression or a multisum

abs(n): absolute value of n

r(n, j): returns the floating -point value of e^(2*pi*i*j/n)

A: an n-dimensional array representing a multisum of (q_1)th, (q_2)th,

..., (q_n)th roots of unity (zeta_1 := e^(2*pi*i/q_1) through zeta_n :=

e^(2*pi*i/q_n)) where q_1 through q_n are prime. Each entry is an

integer. The entry A[k_1; k_2; ...; k_n] is the coefficient on the term

(zeta_1)^k_1*(zeta_2)^k_2 *...*(zeta_n)^k_n and the i-th index ranges

from 0 to q_i - 1.

dims: list of the range of each dimension of A; [q_1 , q_2 , ..., q_n].

Each entry is prime.

degrees: degrees of the sum with respect to each index. A degree of d for

the i-th index means that the sum is invariant under d applications of

the automorphism (zeta_i) -> (zeta_i)^g, where g is a primitive root

modulo q_i.

def multisum_to_radicals(A, dims , degrees):

choose a value of q_i to reduce the degree of the multisum with

respect to (q_i)th roots of unity. In this code , q_1 is chosen.

The algorithm works for any choice , but the resulting radical

expression will be different.

q_1 = dims [0]

d = degrees [0]

Check if the sum has a degree of 1 wrt. the first index. If it is,

the multisum can be simplified by eliminating the first index range

and (zeta_1)^k terms.

BASE CASE: If there is only one index (i.e. the multisum is a sum),

it is simplified to a single integer. This integer is the radical

expression obtained from evaluating the sum , and is then returned.

if d == 1 and len(dims) == 1:

return A[0] - A[1]

if d == 1 and len(dims) != 1:

Produce two subarrays containing all elements of A whose initial

index is equal to 0 and 1, respectively.

Set A to the element -wise difference of these subarrays. This is

our simplified multisum.

A = A[0; 0..q_2 - 1; ...; 0..q_n - 1] .- A[1; 0..q_2 - 1; ...; 0..

q_n - 1]

Evaluate the radical expression for the simplified multisum.

22

A_radicals = multisum_to_radicals(A, dims [1.. len(dims) - 1],

degrees [1.. len(degrees) - 1])

return A_radicals

Choose a prime factor c of d and reduce d by that factor.

The algorithm works for any choice , but I choose 2 if d == q_1 - 1 (

so the expression will separate into real and imaginary parts), and

the greatest prime factor otherwise (to match the historical results

of Gauss et al.)

Note: the choice of 2 does not work when q_1 - 1 is odd (i.e. q_1 ==

2), but that case has already been dealt with above.

if d == q_1 - 1:

c = 2

else:

facts = factorize(d)

c = max(facts)

d = d / c

g = primitive_root(q_1)

find the conjugates of A by applying the automorphism zeta -> zeta^g,

k*d times , where zeta is a (q_1)th root of unity.

A_conj = Array.new(size=c)

for k from 0 to c - 1:

A_conj[k] = sigma^(k*d)(A, index=1, g)

find dimensions and degrees of S[0] through S[c - 1], the discrete

Fourier transform of the values in A_conj

S[0] and S[j]^c (for j = 1 through c - 1) all have degree d with

respect to q_1 , or 1/c of the degree of A

Additionally , if c != 2 then S[j]^c has an extra dimension with range

equal to c and degree equal to c - 1. (If c == 2 then the degree of

1 means that this extra dimension can be, and is, automatically

eliminated in the code that follows)

S_0_dims = dims

S_j_dims = dims

if c != 2:

S_j_dims.insert(0, c)

S_0_degrees = degrees

S_0_degrees [0] = d

S_j_power_c_degrees = S_0_degrees

if c != 2:

S_j_power_c_degrees.insert(0, c - 1)

construct multisums for S[0] through S[c - 1]

S = Array.new(size=c)

23

if c == 2:

S[0] = A_conj [0] .+ A_conj [1]

S[1] = A_conj [0] .- A_conj [1]

else:

S[0] = sum(A_conj)

for j from 1 to c - 1:

S[j] = Array.new(dims=S_j_dims)

for k from 0 to c - 1:

S[j][(j * k) mod c; 0..q_1 - 1; 0..q_2 - 1; ...; 0..q_n -

1] = A_conj[k]

calculate radical expressions for S[0] through S[c - 1]

S_radicals = Array.new(size=c)

S_radicals [0] = multisum_to_radicals(S[0], dims , S_0_degrees)

for j from 1 to c - 1:

find the GCD of all coefficients in S[j] and factor it out before

finding the radical expression

This step is not necessary , but it allows the S[j] radical

expressions to be things like 275* sqrt (5) instead of sqrt

(378125)

Note: The GCD function must return 0 if all the coefficients are

0

divisor = gcd(S[j])

if divisor == 0:

every coefficient in S[j] is 0

S_radicals[j] = 0

else:

divide each coefficient of S[j] by divisor

S_j_div = (1/ divisor)*S[j]

calculate the multisum for (1/ divisor*S[j])^c

S_j_div_power_c = multisum_power(S_j_div , c)

Calculate radical expression for (S[j]/div)^c and then for S[

j]

S_j_div_power_c_radicals = multisum_to_radicals(S_j_div_power_c

, S_j_dims , S_j_power_c_degrees)

S_j_div_radicals = radical_root(c, S_j_div_power_c_radicals)

S_radicals[j] = div*S_j_div_radicals

Calculate the correct choice of cth root by numerically

evaluating the multisum

S_j_numeric = evaluate(S[j])

S_j_radicals_numeric = evaluate(S_radicals[j])

multiply S_j_radicals_numeric by each (q_1)th root of unity

until the two floating -point results are close enough to be

considered equal

24

k = 0

while abs(S_j_numeric - S_j_radicals_numeric) > epsilon:

if k == q_1:

we have tried multiplying by all q_1 roots of unity

print(" Error: Unable to resolve expression ")

exit()

S_j_radicals_numeric *= r(q_1 , 1)

k += 1

indicate jth choice of (q_1)th root

S_radicals[j]. root_choice = k

use inverse discrete Fourier transform to find radical expression for

A

A_radicals = sum(S_radicals) / c

return A_radicals

8 Discussion

We can apply similar optimizations to our algorithm as Weber did to eliminate redundancies.

Even though we have measured the expressions generated by our algorithm to be shorter, there are a few po-
tential issues with the expression complexity metric we used. For instance, the metric requires that the radical
expression does not contain unexpanded products of sums (e.g. (1 +

√
2)(
√

2 +
√

3)). To measure the size of
expressions produced by Gauss/Weber’s method, all such products were expanded into sums, affecting the over-
all length of the expression. Furthermore, our method can produce radical expressions with quite large integers (a
23rd root of unity contains integers that are 98 digits long) but our size metric does not take integer size into account.

It is interesting to note that the expression is “customizable” depending on the order in which the prime fac-
tors of p1 are chosen. In particular, by choosing c = 2 when d = p − 1, we always produce an expression which is
a sum of real and imaginary parts. We can also customize the expression for a multisum by choosing which of its
degrees to reduce. The complexity of the resulting expression does not seem to depend on either of these choices.

Besides prime roots of unity, we can use this method to find a radical expression for any value contained within a
field which is the product of multiple extensions to Q using prime roots of unity. When n is a product of distinct
primes (a square-free number), every nth root of unity is equal to a product of prime roots of unity. This can be
proven by repeated applications of the Chinese Remainder Theorem [8]. Thus, our method can be used to find
radical expressions for nth roots of unity when n is any square-free integer.

In addition, our method can be adapted to express many trigonometric values in radicals. If ζ = e2πi/n, the

values cos(2kπ/n) = ζk+ζ−k

2 and i sin(2kπ/n) = ζk−ζ−k

2 are in Q[ζ] for every integer k from 0 to n − 1. Due to
closure under division, the values i tan(2kπ/n), sec(2kπ/n), i csc(2kπ/n), i cot(2kπ/n) ∈ Q[ζ] as well. Thus, if n is
square-free, all these values can be expressed in radicals using our method.

25

9 Conclusion

In this paper, we have identified a new method for finding radical expressions for roots of unity with prime degree,
as well as for general members of the cyclotomic field of these roots. We have shown that this algorithm produces
shorter expressions than Gauss’s algorithm under a particular metric for expression complexity, and discussed pos-
sible drawbacks of using this metric. We have also discussed this method’s flexibility and potential to be adapted
to trigonometric functions and squarefree composite roots of unity.

When we take the nth root of a complex value, our code uses floating-point computation to identify the cor-
rect choice of complex root by comparing each approximate value to the desired result. This computation is the
main limiting factor keeping our method from working for larger primes. Future work could include redesigning
this part of the algorithm so that it does not use floating-point computations.

We have also not discussed the prospect of finding radical expressions for nth roots of unity when n is not square-
free. If n has a repeated prime factor p, one can of course find an nth roots of unity by taking the pth root of an
n/pth root of unity. However, this method does not produce expressions of equal size for every member of the cy-
clotomic field. Future research could involve improving the method that we describe to produce radical expressions
of uniform complexity for any cyclotomic field. By the Kronecker-Weber theorem, every algebraic number with a
radical expression belongs to some cyclotomic field [9]. Thus, this method could be used to find a radical expression
for every number that has one, simply by expressing it as a sum of roots of unity.

References

[1] Gauss, Carl F. Disquisitiones Arithmeticae. Yale University Press. pp. 359-360, 1965. ISBN 0-300-09473-6.

[2] Lynn, Ben. “Number Theory - The Heptadecagon.” Stanford Applied Cryptography Group, https://crypto.
stanford.edu/pbc/notes/numbertheory/17gon.html. Accessed August 17, 2019.

[3] Lynn, Ben. “Number Theory - Roots of Unity.” Stanford Applied Cryptography Group, https://crypto.

stanford.edu/pbc/notes/numbertheory/rootsunity.html. Accessed August 17, 2019.

[4] Lynn, Ben. “Miscellany - Roots of Unity.” Stanford Applied Cryptography Group, https://crypto.stanford.
edu/pbc/notes/misc/rootsunity.html. Accessed August 17, 2019.

[5] Weber, Andreas; Keckeisen, Michael. “Solving Cyclotomic Polynomials by Radical Expressions” (PDF). Ac-
cessed August 17, 2019.

[6] Weber, Andreas. “Computing radical expressions for roots of unity.” ACM SIGSAM Bulletin, 30, 1996, pp.
11-20. 10.1145/240065.240070.

[7] Lau Jing Feng. “On solvable septics.” ScolarBank@NUS Repository. January 7, 2005.

[8] Lynn, Ben. “Number Theory - The Chinese Remainder Theorem.” Stanford Applied Cryptography Group,
https://crypto.stanford.edu/pbc/notes/numbertheory/crt.html. Accessed May 11, 2020.

[9] Stover, Christopher. “Kronecker-Weber Theorem.” From MathWorld–A Wolfram Web Resource, created by Eric
W. Weisstein. https://mathworld.wolfram.com/Kronecker-WeberTheorem.html. Accessed May 11, 2020.

26

https://crypto.stanford.edu/pbc/notes/numbertheory/17gon.html
https://crypto.stanford.edu/pbc/notes/numbertheory/17gon.html
https://crypto.stanford.edu/pbc/notes/numbertheory/rootsunity.html
https://crypto.stanford.edu/pbc/notes/numbertheory/rootsunity.html
https://crypto.stanford.edu/pbc/notes/misc/rootsunity.html
https://crypto.stanford.edu/pbc/notes/misc/rootsunity.html
http://cg.cs.uni-bonn.de/personal-pages/weber/publications/pdf/WeberA/WeberKeckeisen99a.pdf
https://crypto.stanford.edu/pbc/notes/numbertheory/crt.html
https://mathworld.wolfram.com/Kronecker-WeberTheorem.html

	Introduction and History
	Preliminaries
	Radical expressions
	Roots of unity
	Sums of roots of unity
	Degree of a sum
	Periods
	Example

	Multisums (field extensions)
	Degree of a multisum

	Gauss's method
	Example: 11th roots of unity

	Weber's improvement
	Our algorithm
	Proof that our method terminates
	Example 1: Degrees of multisums used in calculation of 11th roots of unity (p = 11)
	Example 2: Degrees of multisums used in calculation of 53rd roots of unity (p = 53)
	Worked example: calculating the 11th roots of unity

	Radical expression complexity metric
	Pseudocode
	Discussion
	Conclusion

