
PSEUDO-RANDOM FUNCTIONS AND UNIFORM
LEARNABILITY

by

Eric Binnendyk

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Bachelor of Science in Computer Science

New Mexico Institute of Mining and Technology
Socorro, New Mexico

May, 2021

ACKNOWLEDGMENTS

This dissertation was typeset with LATEX1 by the author.

1The LATEX document preparation system was developed by Leslie Lamport as a special version
of Donald Knuth’s TEX program for computer typesetting. TEX is a trademark of the American
Mathematical Society. The LATEX macro package for the New Mexico Institute of Mining and
Technology dissertation format was written by John W. Shipman.

iii

ABSTRACT

Boolean circuits are a model of computation. A class of Boolean circuits is called
a polynomial class if the number of nodes is bounded by a polynomial function of the
number of input variables. A class Cn[s(n)] of Boolean functions is called learnable
if there are algorithms that can approximate functions in Cn[s(n)] when given oracle
access to the function. A distribution D of functions is called pseudorandom against
a circuit class C[t(n)] if any oracle circuit C f from C[t(n)] outputs 1 with the same
probability if the oracle f is chosen from D as it would if the oracle were random.
It is known that a polynomial class of circuits is learnable if and only if it contains
no pseudorandom distributions of functions. However, there is no known algorithm
to produce the learner given the number of inputs the circuits have (the learner is
non-uniform). In this paper we use a uniform version of the minmax theorem to
prove the existence of uniform learners under certain conditions.

Keywords: Computational complexity; Machine learning; Cryptography

CONTENTS

Page

LIST OF FIGURES vii

CHAPTER 1. INTRODUCTION 1
1.1 Orgaization of the paper . 2

CHAPTER 2. BASICS - DEFINITIONS, NOTATIONS, AND ESTABLISHED
RESULTS 3
2.1 Circuit Complexity . 3

2.1.1 Variants and extensions to circuits 5
2.2 Computational Indistinguishability 6
2.3 Pseudorandom generator . 6
2.4 Learning . 8
2.5 Black-box generator . 8
2.6 Games and Minmax theorem . 9

2.6.1 Game matrix . 9
2.6.2 von Neumann’s minmax theorem 9

CHAPTER 3. NON EXISTENCE OF PRF IMPLIES LEARNABILITY: NON-
UNIFORM CASE 11
3.1 Game matrix of PRF . 11

3.1.1 Set up . 11
3.1.2 Non-existence of PRF - interpretation 12
3.1.3 Universal ensemble distinguisher - interpretation 13

3.2 Non-uniform small support minmax theorem 13
3.3 Non-existence of PRF implies universal distinguisher 14
3.4 Universal distinguishers imply learners 14

CHAPTER 4. UNIFORM MINMAX THEOREM WITH APPLICATION TO
HARDCORE LEMMA 16

v

CHAPTER 5. NON EXISTENCE OF PRF IMPLIES LEARNABILITY: UNI-
FORM CASE 18
5.1 Definitions . 19
5.2 Nonexistence of PRF implies uniform learners 19

5.2.1 General set up and black-box distribution 19
5.2.2 Hardcore Lemma set up . 19
5.2.3 No PRF implies weak predictability of dense distributions in

BB distribution . 19
5.2.4 Strong predictability of BB distribuion implies distinguisher

for BB distribution . 20
5.2.5 Proof of uniform learners . 21

REFERENCES 22

APPENDIX A. PROOFS 23
A.1 Proof of uniform minmax theorem 23
A.2 Proof of uniform hardcore theorem 23

vi

LIST OF FIGURES

Figure Page

Figure 2.1 An example of a Boolean circuit 4
Figure 2.2 What a function distinguisher does 7
Figure 2.3 How a distinguisher samples from a pseudorandom function . 7

Figure 3.1 Setup of the PRF distinguisher game. 12

Figure 5.1 Outline of the proof of uniform learners 18

vii

This dissertation is accepted on behalf of the faculty of the Institute by the
following committee:

Ramyaa

Academic and Research Advisor

Subhasish Mazumdar

Jun Zheng

Marco Carmosino

Antonina Kolokolova

I release this document to the New Mexico Institute of Mining and Technology.

Eric Binnendyk May 3, 2021

CHAPTER 1

INTRODUCTION

We aim to understand the constructive relationships between pseudorandom-
ness and learnability for concept classes. It is well-known that pseudorandomness
and learnability are closely related to each other. In the non-uniform setting, there
is a dichotomy between learnability and pseudorandomness, i.e., duality between
“inability to simulate randomness” by a class and its “feasible learnability”. We
want to explore this dichotomy in the uniform setting.

In the non-uniform setting, Λ can be learned non-trivially if and only if Λ
cannot compute secure pseudorandom functions, i.e., nontrivial circuits can learn the
class of Λ-concepts if and only if Λ-functions are too “weak” to convincingly simulate
randomness. This is a striking and interesting result, because it characterizes the
difficulty of learning by the expressive power of the target concept class.

One direction is well-established ([1], Lemma 5). If Λ-concepts can be learned,
then Λ-functions cannot simulate randomness. A randomness distinguisher can be
built using the learner as follows: The learner can be run on the candidate random
object. Those output by Λ-functions can be learned successfully. However, most
randomly chosen functions will have almost no correlation with the learner’s output.
(This follows a counting argument that the Boolean functions vastly outnumber Λ-
functions, and so possible outputs of the learner).

It has recently been shown that if Λ functions cannot simulate randomness,
then Λ concepts can be learned. The proof proceeds as follows: assume the exis-
tence of detectors that distinguish functions in Λ from random responses to their
queries, thus preventing individual Λ-functions from successfully simulating ran-
domness; then, we apply the minmax theorem, which guarantees a universal detec-
tor that can identify any Λ function’s outputs; this universal detector is used in
a blackbox generator to approximate Λ functions, thus learning them. However,
the learning “algorithm” produced by this result is non-constructive, in the sense
that it requires “advice” to operate. The natural question to ask is: can we get a
normal algorithm? And under what assumptions? In this thesis, we investigate this
question and provide an answer.

The main tool used in proving the dichotomy in the non-uniform case is two-
player zero-sum game formulations. A version of the minmax theorem applied to
such a game is central to the proof. The non-uniformity of the minmax theorem
contributes to the non-uniformity of the dichotomy. This makes the entire proof
non-uniform, i.e., under the assumption that there are no pseudorandom generators
in Λ against non-uniform adversaries/detectors, the proof gives a separate algorithm
to learn Λ concepts for each input size n, but not an algorithm that works for all

1

n. Though the assumption appears harder than the uniform version, it is also non-
constructive, i.e., the assumption only requires the existence of adversaries for any
potential pseudorandom generator.

We will explore the use of a uniform version of the minmax theorem and show
that this leads to a uniform version of this result. To constructively show the
existence of a uniform learning algorithm for the class Λ, we need to strengthen our
assumption, requiring a constructive way to obtain a detector/adversary against any
pseudorandom generator that works for any input size.

1.1 Orgaization of the paper

Chapter 2 gives some definitions and discusses the setting in which these results
are useful.
Chapter 3 gives a summary of the result stating that non-existence of PRFs implies
learnability. This is simply an extraction of the relevant concepts and proofs from
the paper [1]. We give the set up and proofs which will be modified. This is followed
by an analysis of the use of non-uniformity.
Chapter 4 gives the results pertaining to the uniform minmax theorem given by
Vadhan and Zheng. Here, we only state the main results, leaving the proofs to
appendix, because we will only be using the results and not modifying the proofs
involved.
Chapter 5 gives our contribution which shows how to use the uniform minmax the-
orem to get a result stating that non-existence of PRFs implies uniform learnability,
under some assumptions.

2

CHAPTER 2

BASICS - DEFINITIONS, NOTATIONS, AND ESTABLISHED
RESULTS

This section covers definitions about circuit complexity, probabilistic and ran-
domized algorithms, learning, psuedorandom function families, black box generators
and minmax theorem. Here we only give definitions and theorems that are well-
established and can be considered basic. Other definitions and theorems that are
more advanced are presented in the following sections.

2.1 Circuit Complexity

Boolean circuit: A Boolean circuit is a node-labeled DAG (directed, acyclic
graph) in which

• Source nodes are labeled by inputs
• Sink nodes are labeled by outputs
• Internal nodes are labeled by Boolean gates (we restrict this to be from

{¬,∧,∨}).

An edge is also called a wire. Each of the input nodes can be negated as soon as it
is processed. Due to De Morgan’s Law, this is equivalent to not gates being allowed
as nodes anywhere in the circuit.

Fan-in / Fan-out: Fan-in of a node is the number of wires going into it; Fan-out
of a node is the number of wires going out of it.
Note that the fan-in of a node should match the arity of the gate which is the label
of the node. If the gates can be made general (e.g. ∧, ∨), there is no restriction on
the fan-in.

Size of the circuit: Size is the number of nodes in a circuit. Given that the
number of edges is polynomial in the number of nodes, we may also specify the size
of a circuit as the number of edges in it.

Depth of a circuit: Depth of a circuit is the longest path in the DAG.
Descriptions of circuits: Since a circuit is just a labeled DAG, it is possible to

describe a circuit using a bit-string of length polynomial in its size. We will assume
such a standard encoding.

Evaluation of a circuit:

3

Figure 2.1: An example of a Boolean circuit

• Input nodes’ evaluation is given by the input corresponding to their label.

• Each edge’s evaluation is given by its source node’s evaluation.

• Internal nodes’ evaluation is the output produced by the gate corresponding
to their label, with inputs given by the edges coming into them.

• Output node’s evaluation is taken as the output corresponding to the node’s
label.

Note that the evaluation of the node is propagated to all the wires coming out of it.
It is direct to see that, given the description of a circuit, it can be evaluated in

time polynomial in it the size of the description, and so in time poynomial in the
size of the circuit.

Model of computation: Given that a circuit is a DAG and its nodes can be
topographically sorted, a circuit computes a Boolean function f : BM → BN where
M is the number of inputs, and N is the number of outputs.
Unlike a program which can take inputs of any lengths, a single circuit computing
a Boolean function f : BM → BN can only take M-bit string as input. There are
2M such bit-strings which this circuit can handle, whereas a Turing machine can
input any (finite) bit-string. Though this seems like a property of circuits, it is a
limitation: there are Boolean functions such as conjunction, parity, majority etc.
that can be naturally defined on any input size; extending this idea, we may want
to consider any function f : B ∗ B.

Circuit family: A family of circuit indexed by a set. Typically, a circuit family
is indexed by natural numbers, and the ith in the family takes i Boolean inputs and
one output. So, a circuit family C is a function F from N to circuits. Thus, this
circuit family simulates a Boolean function of any input size, and so is a model of
computation similar to Turing machines.

4

Size/Depth: Size/depth of a circuit family is the function mapping n to the
size/depth of the circuit taking n inputs. We can apply asymptotic resource mea-
sures here.

Non-uniform model of computation: As defined, a circuit family need not be
computable, i,e, there need not exist a Turing machine that takes a natural number
i and outputs the circuit with i inputs. Because of this, such a circuit family can
compute undecidable functions.

Non-uniformity and advice: Even if no algorithm is known for a circuit family,
it can still be proven to exist non-constructively. This can be turned into a partial
algorithm for the circuit class, which requires consulting an oracle for advice for the
non-constructive part of the proof.

Uniform Model of computation: A uniform circuit family is a circuit family
that is constructible, i,e, there is a Turing machine M that inputs i in unary, and
outputs a description of a circuit with i inputs.

Circuit classes: Circuit classes are sets of circuit families that satisfy some
restrictions. There are many ways to restrict a circuit family to get complexity
considerations in.

• We can restrict the size of a circuit family. Cn[s(n)]: the class of Boolean
functions of n input variables computable by circuits of at most s(n) wires.
A typical restriction is that if polynomial or subexponential. C[poly(n)]: the
class of Boolean functions computable by circuit families C1, C2, ... where the
size of all Cn is bounded by a polynomial of n.
Note that given there are only 2n inputs of size n, and only 22n functions, if a
circuit is allowed to be exponential, any circuit is possible.

• We can restrict the depth of a circuit family. A typical restriction is that of
logarithmic depth.

• We can restrict the complexity of the Turing machine that generates the func-
tion family. Typical restrictions include polynomial time or logarithmic space.

2.1.1 Variants and extensions to circuits

Randomized circuits: These are circuits that take m random bits as inputs
in addition to their regular inputs. For such circuits we talk of the probability of
outputting “True” or 1 for a given input, when the random bits are drawn from
some distribution, typically the uniform distribution.

In case of circuit families, we may require that the probability of acceptance
should be a function of the input size, or that it should be bound away from 1/2 by
a value that is a function of the input size. We may also require that the number of
random bits used by a circuit is a function of the number of inputs of the circuit.

In the following, we use Un to denote the uniform distribution over n-bit strings,
and Fn to denote the uniform distribution over all Boolean function over n inputs.
We write x D to denote that x is drawn from the distribution D. We write x A to
denote that x is drawn uniformly at random from the finite set A.

5

Oracle circuits: circuit with “oracle gates” that can be substituted with any
Boolean function h (with the same arity) as its oracle. We denote an oracle circuit
by CO, and the output of the circuit with input x and oracle h is Ch(x). Note that
this corresponds to the idea that an oracle can be queried in one time step.

If a circuit C has oracle access to a function h of m inputs, then for C to
determine the function h, it has to query 2m different inputs, thus it has to be of
size > 2m.

2.2 Computational Indistinguishability

A central concept of cryptography is “effective similarity”. Under this notion,
the inequality or dissimilarity between objects matter only if the difference is de-
tectable. This naturally gives rise to the notion of a detector (distinguisher) and
“cheater”. Generalizing this, we have a class of distingushers and try to detect the
‘identity’ of another class of objects. Typically, the cheaters we are interested in
are probability distributions (that try to pass themselves off as other probability
distributions, e.g.,: as a uniformly random distribution); typically, the detectors we
are interested in are statistical tests with limited resources.

Computational Indistinguishability: Let X and Y be probability distributions
over strings of length n. We say that X and Y are computationally indistinguishable
if for every feasible algorithm A, we have |Pr[A(X) = 1] − Pr[A(Y) = 1]| is a
negligible function of n (e.g. exponentially decreasing with n).

Distinguishers and distinguishing circuits: Given a probability distribution Wn
over {0, 1}n, and a Boolean function b : {0, 1}n → {0, 1}, we say that hn is a
distinguisher for Wn if |Prw∼Wn hn(w)− Prx∼Un hn(x)| ≥ 1/4.
A circuit Dn is a distinguishing circuit for Wn if Dn computes hn described above.

The definitions of distinguishers and distinguishing circuits can be general-
ized directly to families indexed by n. Here, if the distinguishing circuit family is
computable, then we have uniform distinguishing circuits. Further, the resource
requirements of generating the probability distribution Wn and the distinguishers
can be limited separately, so it is possible to talk about one class of functions being
distinguishable (or not) by another class.

2.3 Pseudorandom generator

A true random string is a sequence generated by an unpredictable physical
process, such as a quantum event, or tossing of a coin. Pseudorandom string is a
sequence generated by a program, and so, is predicable; if a program takes a true
random string as seed to generate a much longer sequence, it would not be completely
predictable; but it would not be completely unpredictable, as a true random string
would be. Given these definitions are based on predictability, we could consider the
strength of the predictors as a parameter, i.e., predictability can be defined with
respect to a resource limited class of predictors. Then, we can use a pseudorandom
string instead of a true random string, even in cryptographic settings.

6

Figure 2.2: What a function distinguisher does

Pseudorandom generator: Let l : N → N with l(n) > n. A pseudorandom
generator with stretch function l is an efficient, deterministic algorithm that inputs
a (true) random n bit seed and outputs an l(n) bit string which is computationaly
indistinguishable from a (true) random l(n) bit string.

A psuedorandom function allows efficient, direct access to very long pseudo-
random sequence (too large to read in full). Pseudorandom functions can replace
truly random functions (a function chosen at random from a class of functions) in
applications where the function is only called (and not subjected to a source-code
analysis).

Pseudorandom function: A pseudorandom function is an efficient, deterministic
algorithm which inputs s, an n bit seed, and an n bit argument x, and returns an
n bit string, fs(x), so that it is infeasible to distinguish the response of fS for a
uniformly chosen s from a response of a truly random function.

Figure 2.3: How a distinguisher samples from a pseudorandom function

Pseudorandom function family.
Function family: a pair (Gn, Dn)

• Gn: a set of Boolean functions of n variables
• Dn: a probability distribution over Gn

A (t(n), ε(n))-pseudorandom function family or PRF in Cn[s] is a function family
(Gn, Dn) in C[s(n)] such that∣∣∣Prh∼Dn,w1 [B

h(w1) = 1]− Pr f∼Fn,w2 [B
f (w2) = 1]

∣∣∣ ≤ ε

7

for every randomized oracle circuit in BO ∈ CircuitO[t(n)].
As the circuits are parametrized by n, the definitions directly generalize to

families, and if the circuit family is computable, then we have pseudorandom func-
tion families; similarly we may also have pseudorandom function families secure
against a uniform class. Further, the resource limits on pseudorandom generators
and distinguishers can be set separately.

2.4 Learning

PAC learners:

Probably approximately correct (PAC) learning is a type of function learning.
It involves an instance class I and a hypothesis class H. An oracle algorithm AO

samples queries from a function f ∈ I and returns a function h ∈ H (as a circuit).
The learner has two criteria based on parameters δ and ε:

• The learner algorithm has a 1 − δ chance of running successfully, given a
particular distribution over the instance class.

• If successful, the output h matches f on most inputs: Prx∼D[h(x) = f (x)] ≥
1 − ε where D is some distribution over inputs.

We are interested in studying the learnability of some circuit classes by oracles
in other circuit classes.

Learning a circuit family: We say that a class C[s(n)] of Boolean functions
has (ε, δ)-learners running in time t if for large enough n: For every function f ∈
Cn[s(n)], with probability at least 1 − δ over the algorithm’s randomness, the call
A f (1n) outputs a circuit h such that Prx∼Un [h(x) ̸= f (x)] < ε(n).

Learner circuit: We are interested in learning functions from a class C[s(n)]
using a randomized oracle algorithm with membership queries. If a function f is
represented by a circuit C, the learner has oracle access to f and outputs a circuit
description C′ that is a circuit for f . Note that C need not be the same as C′.

Circuit learning a circuit: Here, the learner L is a circuit - so L is an oracle
circuit that has oracle access to the function f and outputs a circuit description of
C where C computes f . (The outputs of L can encode the description of circuits.
We will assume a standard encoding of this sort).

2.5 Black-box generator

A black-box generator (for this project) is a pseudorandom generator specifi-
cally designed for the purposes of derandomization, as opposed to cryptography. It
assumes the hardness of a function f (even to approximate), and guarantees that

8

if the pseudorandomness generated is distinguishable from true randomness, then f
can be approximated by simple algorithms, violating the hardness assumption.

Definition:
A (γ, ℓ)-black-box generator for a circuit class Cn[s(n)] is a mapping that assigns
to each function f ∈ Fn a set of functions {gz|z ∈ Um} where gz : {0, 1}ℓ → {0, 1},
for which the following conditions hold:

• size: the parameter m is polynomial in n and 1/γ

• complexity: For every z ∈ {0, 1}ℓ, we have gz ∈ C f [poly(m)]

• reconstruction: Let L = 2ℓ and WL be the distribution supported over {0, 1}L

that is generated by the truth table of gz, where z is uniformly sampled. There
is a randomized algorithm A f , taking as input a circuit D and having oracle
access to f , which when D is a distinguishing circuit for WL, outputs a circuit
that is γ-close to f and is of size polynomial in n, 1/γ, and size(D) with
probability ≥ 1 − 1/n.

2.6 Games and Minmax theorem

In a two-player game, player 1 and player 2 both have a finite number of pure
strategies. Player 1 and player 2 each play pure strategies and the outcome or value
of the game is a numeric value. Player 1 tries to minimize this value while player 2
tries to maximize it.

2.6.1 Game matrix

This idea can be described by a matrix M, where each row is a pure strategy
by player 1 and each column is a pure strategy by player 2. Following the notation
used in [1], M(i, j) is the value of the game when player 1 plays pure strategy i and
player 2 plays pure strategy j.

2.6.2 von Neumann’s minmax theorem

An important result in game theory is von Neumann’s minmax theorem:
Theorem 1 (minmax theorem):

Let P denote a probability distribution over matrix rows and Q denote a probability
distribution over matrix columns. Then

min
P

max
Q

Ei∈P,j∈QM(i, j) = max
Q

min
P

Ei∈P,j∈QM(i, j)

9

The distributions P and Q are called mixed strategies, and we use the notation
M(P, Q) = Ei∈P,j∈QM(i, j).

Because the optimal response to any given mixed strategy is a pure strategy
(due to the convexity of the space of mixed strategies), this can be rewritten:

min
P

max
j

Ei∈PM(i, j) = max
Q

min
i

Ej∈QM(i, j)

Definition: Value of a game: The value v(M) of a game with matrix M is the
value on both sides of the minmax equation.

Definition: Value of a strategy: The value of a mixed strategy P for player
1 is v(P) = maxQ[M(P, Q)]. The value of a mixed strategy Q for player 2 is
v(Q) = minP[M(P, Q)].

Interpretation: The minmax theorem gives us information about how well a
player’s mixed strategies perform.
The minmax theorem can be written as:
For any ε,

LHS = min
P

max
Q

Ei∈P,j∈QM(i, j) = min
P

v(P) > ε

if and only if

RHS = max
Q

min
P

Ei∈P,j∈QM(i, j) = max
Q

v(Q) > ε

LHS > ε can be interpreted as: for all mixed strategies P of player 1 there exists a
response j from player 2 such that M(P, j) > ε.
RHS > ε can be interpreted as: there exists a mixed strategy Q for player 2 such
that for all i, M(i, Q) > ε
In other words, if player 2 has a response to each of player 1’s mixed strategies, then
player 2 has a single mixed strategy that can responds to any of player 1’s strategies.

The minmax theorem is non-uniform. This means that there is no known
efficient algorithm for finding the maxmin strategy given the responses to player 1’s
strategies. In fact, there may be no efficient way to describe the distribution at all.

10

CHAPTER 3

NON EXISTENCE OF PRF IMPLIES LEARNABILITY:
NON-UNIFORM CASE

This chapter examines the proof of learnability in the absence of pseudorandom
functions in the non-uniform setting, with the aim of isolating the sources of non-
uniformity.

The definitions and proof given here are extracted from [1]. We first give all the
relevant definitions and theorem statements. These theorems may or may not be
used in our proof, but we will not modify them or their proofs. We split the proof
into two sections - first showing the existence of a universal distinguisher, then using
it to show the existence of a learner. We give full proofs in these sections because
we intend to modify these.

3.1 Game matrix of PRF

The result in [1] is that nonexistence of sampleable PRFs implies learnability
for Cn[nk] for all k (and a particular value of n). This result is non-uniform because
the proof involves the minmax theorem.

3.1.1 Set up

We will create a game, the PRF distinguisher game, that involves distinguishing
function families from random functions.

• Player 1’s pure strategies: functions h ∈ Cn[s]

• Player 2’s pure strategy: circuits C ∈ CircuitO[t]

• Game matrix values: M(h, CO) = Ch − E f∼Fn(C
f).

We also require that CircuitO[t] must be closed under complementation, for
reasons that will become clear soon.

11

Figure 3.1: Setup of the PRF distinguisher game.

In this setup, the minmax theorem states: minP maxCO∈CircuitO(t) Eh∼PM(h, C) ≥
ε if and only if maxQ∼CircuitO(t) minh EC∼QM(h, C) ≥ ε.

The value of the game with mixed strategies P and Q is given by:

Eh∼P,C∼QM(h, C)

= Eh∼P,C∼Q[Ch − E f∼Fn(C
f)]

= Eh∼P,C∼Q[Ch]− E f∼Fn,C∼Q[C f]

= Prh∼P,C∼Q[Ch = 1]− Pr f∼Fn,C∼Q[C f = 1]

3.1.2 Non-existence of PRF - interpretation

The LHS of the minmax theorem says:
For all distributions P over Cn[s], there exists a circuit C ∈ CircuitO[t] such that
Prh∈P[Ch = 1]− Pr f∈Fn [C

f = 1] ≥ ε.
This is almost the same as the statement “There are no (ε, t)-PRFs in Cn[s].” The

12

only difference is that it is missing the absolute value sign. But since we assumed
that the class CircuitO[t] is closed under complementation, this statement follows
from the nonexistence of PRFs. This is because for any circuit C that distinguishes
Cn[s], either C or its complement C′ satisfies Prh∈P[Ch = 1]− Pr f∈Fn [C

f = 1] ≥ ε.

3.1.3 Universal ensemble distinguisher - interpretation

The RHS of the minmax theorem says:
There exists a distribution Q over CircuitO(t) such that for every function h ∈ Cn[s],
we have PrC∈Q[Ch = 1]− PrC∈Q, f∈Fn [C

f = 1] ≥ ε.
This distribution Q acts like a distinguisher for every circuit in Cn[s], in terms

of its expected behavior. It is possible to make this into a single distinguishing
circuit for the class, by combining all the circuits in Q into a single randomized
circuit. However, the number of circuits in CircuitO[t] is exponential in t, and thus
this distinguisher may be larger than exponential sized in n. The proof of efficient
learnability requires an reasonable sized universal distinguisher, which Oliveira and
Santhanam achieve using the small-support minmax theorem.

3.2 Non-uniform small support minmax theorem

The small-support minmax theorem [2] [3] was introduced by Richard Lipton
and Neal Young. It guarantees the existence of small distributions that are almost
as good as the optimal row and column strategies.

Definition: k-uniform strategies: We say that a mixed strategy is k-uniform if
it is a uniform distribution over a multiset of at most k columns or rows. We use Pk
and Qk to denote the sets of all k-uniform row and column strategies, respectively.

Theorem 2 - Small support minmax theorem: Let M be a r × c real-valued
matrix with entries in the interval [−1, 1]. For every δ > 0, if kr ≥ 10 ln(c)/δ2 and
kc ≥ 10 ln(r)/δ2 then

min
P∈Pkr

v(P) ≤ v(M) + δ

and
max

Q∈Qkr

v(Q) ≥ v(M)− δ

This theorem allows for an ensemble of circuits that distinguish CircuitO[t] and
can be converted into a single reasonable sized random circuit.

13

3.3 Non-existence of PRF implies universal distinguisher

Theorem 3 (Oliveira and Santhanam): Let s(n) ≥ n, t(n) ≥ n, ε(n) >
0,and γ(n) > 0 be arbitrary functions. If the circuit class Cn[s(n)] contains no
(t(n), ε(n))-PRF, then there is a randomized oracle circuit BO ∈ CircuitO[O(ts/γ)c]
(for some universal constant c ∈ N) that distinguishes every distribution over
Cn[s(n)] from randomness with advantage at least ϵ(n)− γ(n).

Because the minmax theorem is non-uniform (there is no efficient algorithm to
compute the max-min strategy), the universal distinguisher is also non-uniform.

3.4 Universal distinguishers imply learners

Main lemma for this subsection:
Lemma 33: Assume that for every k > 1 and large enough n there is a randomized
oracle circuit BO

n in CircuitO[2O(n)] which distinguishes every distribution Dn over
Cn[nk] from randomness with advantage 1/40. Then for every ℓ > 1 and ε > 0,
there is a non-uniform sequence of randomized oracle circuits in CircuitO[2nε

] that
learn every function f ∈ Cn[nℓ] to error at most n−ℓ.

The proof of the above theorem is basically from Oliveira and Santhanam’s
paper. In this subsection, we give the background needed and the proof itself.

This definition, in some sense, allows us to connect distinguishers for functions
to learners for similar functions.

Lemma: The class AC0 can be learned in quasi-polynomial time.
Learners for the circuit classes Cn[nk] are constructed from distinguishers for

Cn[nk] via a black-box generator, as described above.
This next theorem guarantees that black-box generators exist for a large class

of circuit families.
Theorem 4 - existence of black-box generators. Let p be a fixed prime, and C be

a typical circuit class containing AC0[p]. For every γ : N → [0, 1] and ℓ : N → N,
there exists a (γ, ℓ)-black-box generator within C. Furthermore (although unstated
in Oliveira and Santhanam), the reconstruction algorithm A f can be considered
a function of n and will still run in polynomial time when taking input 1n. The
function mapping z, x to gz(x) (with oracle access to f) can also be computed in
polynomial time.

This allows us to prove learners for a circuit class whenever we can find a
distinguisher D for the black-box distribution WL.

Lemma 23 (faster learners from distinguishers). Let C be a typical circuit
class. If C[poly(n)] has distinguishers running in time 2O(n), then for every ε > 0,
C[poly(n)] has strong learners running in time O(2nε

).

14

Requirements: There are separate distinguishing algorithms for Cn[f (n)] for
each polynomial f (n) and each n.
Guarantees: There are separate learning algorithms for Cn[f (n)] for each polynomial
f (n) and each n.

Proof: Let A0 be a complexity distinguisher for Cn[s] (or alternatively a distin-
guisher that works for any distribution whose support is a subset of Cn[s]), taking
input 1ℓ. If C is the class AC0, then it can be learned due to the above lemma.
Otherwise, C contains ACO[p] for some prime p.
We show the existence of (1/nk, 1/n) learners.
Let 0 < ε′ < ε. Theorem 4 guarantees a (1/nk, nε′) black-box generator A1 of
functions gz ∈ C f

ℓ [poly(m)], where m = O(poly(n, 1/γ)) = O(poly(n)).
The learner A f is constructed as follows:
Interpret the oracle algorithm Ag

0 as a probabilistic polynomial time algorithm ex-
plicitly given the truth table of g as input.
This produces an algorithm D(·,−→r), where r is a vector of random bits. It is
converted into a circuit with these random bits fixed. Because we started with an
algorithm in time O(2n), and it took an input of size ℓ, it converts into a circuit DL
of size O(2ℓ).
We then run A1 on input DL, and A f returns with the same output.
Because of the complexity restriction of f , we have gz ∈ Cℓ[poly(ℓ)]. Thus, DL
works as a distinguisher of WL and running A1(DL) outputs a learner.
We can also prove the same thing assuming A0 is a distinguisher for the uniform
distribution over truth tables of circuits in any subset (or multiset) of Cn[s], rather
than a complexity distinguisher. This proof is more direct; we simply fix the subset
of Cn[s] to be {gz|z ∈ {0, 1}m} and the distribution to be WL, and the result follows
directly because we have a distinguisher for WL.

To prove that no PRFs in Cn[nℓ] implies learnability, we use Theorem 3 to
construct a universal distinguisher for Cn[nℓ] and Lemma 33 to show that Cn[nℓ]
(for each values of n, ℓ) has a learner. Because the distinguisher is non-uniform,
this will result in a non-uniform learner.

15

CHAPTER 4

UNIFORM MINMAX THEOREM WITH APPLICATION TO
HARDCORE LEMMA

Vadhan and Zheng (2014) present a uniform version of the minmax theorem.
This theorem constructs an algorithm to compute an approximate minmax strategy
given oracle access to the optimal response to a pure strategy of player 1. [4]

Definition. Let N be a natural number. We denote the set {1, 2, . . . , N} as
[N].

In this game setup, [N] is the set of options for player 1 and W is the set of
options for player 2. Unlike in the PRF distinguisher game, we allow player 1’s pure
strategies to be any particular distribution P over rows, rather than individual rows.
We require that the are a finite number of pure strategies, and denote the set of all
pure strategies as V . A mixed strategy is then a linear combination of these pure
strategies; the space of mixed strategies may not cover all distributions over rows.
Player 2’s pure strategies are still individual columns.

Unlike in the PRF distinguisher game, the payoff of the game M(x, y) is a real
number in the range [0, 1], not [−1, 1]. Player 1 tries to minimize the payoff while
player 2 maximizes it.

The uniform minmax theorem goes as follows:
Theorem 5 - Uniform Minmax Theorem. Let there be a 2-player game set up

as above. For every 0 < ε ≤ 1 and every S, there is an algorithm to output a mixed
strategy Q∗ for Player 2 such that for all Player 1 pure strategies P:

M(P, Q∗) ≥ E1≤i≤SM(P(i), Q(i))− O(ε)

for a particular sequence of mixed strategies P(1), P(2), ..., P(S) and their response
strategies Q(1), Q(2), ..., Q(S).
In particular, if we have an algorithm to compute a strategy Q(i) from a represen-
tation of P(i) such that M(P(i), Q(i)) ≥ v(P)− δ, the resulting strategy Q∗ is such
that for all Player 1 pure strategies P:

M(P, Q∗) ≥ v(M)− δ − O(ε)

We need some criteria regarding efficient computability in order for this theo-
rem to hold:

16

• A compact representation of the mixed strategies P(i) (O(Poly(log(n))) space).

• A fast algorithm to obtain a response Q(i) for each mixed strategy P(i).

• A fast algorithm to perform weight update, and to project onto Conv(V).

• A choice of pure strategies so that U[N] ∈ Conv(V)

An application of this theorem is the uniform hardcore theorem. This is a
uniform version of Russell Impagliazzo’s Hardcore Theorem. which goes as follows:

Theorem 6 - Uniform hardcore theorem: Let L be a parameter indexing a family
of distributions, m = m(L) be a polynomial function of L, δ = δ(L), ε′ = ε′(L)
computable in poly(L) time, and (X, B) = G(Um) be a joint distribution where
G : {0, 1}m → {0, 1}L × {0, 1} is computable in polynomial time.

• Um is the uniform distribution over {0, 1}m.

Assume that for every C ∈ Cm,2δ and infinitely many L, we have Pr(x,b)∼G(C)[AC(x) =
b] > 1/2 + ε′, where A is an oracle algorithm that runs in time t.

• Cm,2δ is the set of all 2δ-dense probability distributions over {0, 1}m.

• This set contains the uniform distribution Um.

Then there is a poly(t, L, 1/δ, 1/ε′) algorithm P such that for sufficiently large L,
Pr(x,b)∼G(Um)[P(x) = b] > 1 − δ.

Note that this theorem is uniform because it assumes a single oracle algorithm
and guarantees a single predictor working for every value of L.

17

CHAPTER 5

NON EXISTENCE OF PRF IMPLIES LEARNABILITY:
UNIFORM CASE

In this section, we show that there exist uniform learners, assuming there is
a constructive way to find distinguishers for every function family in Cn[poly(n)].
We use the uniform hardcore lemma to produce uniform predictors which work as
distinguishers, and use the black-box generator to prove the existence of a uniform
learner.

Figure 5.1: Outline of the proof of uniform learners

18

5.1 Definitions

tt f - The truth table of the Boolean function f . If f has n inputs, tt f is a
binary string of length 2n where the i-th bit is the result of f evaluated on the i-th
configuration of inputs.

5.2 Nonexistence of PRF implies uniform learners

5.2.1 General set up and black-box distribution

We set up this theorem so that the predictor guaranteed by the hardcore theo-
rem is a distinguisher for the black-box distribution WL. This means that we have
to set up the distribution (X, B) to be related to WL.

Then, the existence of a black-box generator and a distinguisher directly implies
the existence of a learner. Because the constructions of both the black-box generator
and distinguisher are uniform, the learner is also uniform.

5.2.2 Hardcore Lemma set up

In the Hardcore Lemma, we need:
A constant m: we take the uniform distribution Um over binary strings of length m
A set SX containing the values of X in the pair (X, B)
A generator function G: It maps each of the strings in Um to a distribution (X, B).
A value δ that is the accuracy of the predictor. We need a distinguisher for 2δ-dense
distributions.

We satisfy these requirements as follows:
m is the parameter from the black box generator.
SX: we take SX = {0, 1}2ℓ – the set of binary strings of length 2ℓ.
G: We set up G as follows: G(x) = 1/2(< U2ℓ , 0 > + < ttgx , 1 >), where gx is
the function from the black-box generator. In other words, a value of X has a 1/2
chance of being chosen from U2m (in which case the value from B is 0) and a 1/2
chance of being ttgx (in which case the value from B is 1).
We let δ = 3/16.

5.2.3 No PRF implies weak predictability of dense distributions in BB distri-
bution

Theorem 7 - No PRF implies weak predictability: Let kW(n) be computable
in poly(n) time. Assume that for every distribution D over Fn with Support(D) ⊆
Cn[s], there is a circuit BO ∈ CircuitO[t(n)] such that |Pr f∼Fn [B

f = 1]− Prh∼D[Bh =

19

1]| ≥ ε. Furthermore, assume there is a tW(n)-time algorithm W(1n) that with
probability 1 − εW constructs BO given kW(n) random samples from D. It follows
that there is an oracle algorithm AO(1ℓ, x) that runs in time t, sampling from a
distribution C, such that:
For every integer n and every distribution C over Um(n), Pr(x,b)∼G(C)[AC(1ℓ(n), x) =
b] > 1/2 + ε′ for ε′ = ε/2.

Proof:
Construct an algorithm orC(1ℓ) that samples up to 2kW(ℓ) samples (x, b) from a
distribution G(C), until b = 1. In this case, x is the truth table of a function sampled
from the distribution D = { WL ⊂ Cℓ[ℓ

k]. This algorithm has a 1− 1/22kW(ℓ) chance
of success on each run. This algorithm runs in 2kW(ℓ) + poly(ℓ) time.
Construct the algorithm A as follows:
Input the strings 1ℓ and x with oracle access to C ⊆ Um.
Use orC to answer the kW(ℓ) queries used by W(1ℓ) to return an oracle circuit BO.
The chance of all the queries being answered successfully is (1 − 1/22kW(ℓ))kW(ℓ) >
1 − 1/2kW(ℓ).
Because or queries from a distribution over Cℓ[ℓ

k], the oracle circuit BO acts as a
distinguisher for this distribution.
Convert BO into a circuit B′ whose input is of size 2ℓ, such that B f has the same
output as B′(tt f).
Finally, run B′(x) and output its return value.

Now we argue that A is a weak predictor. Let α = Pr f∼Fn [B
f = 1]. We

have Pr f∼Fn(AC(tt f) = 0) = 1 − α and Prh∼D(AC(tth) = 1) > α + ε. Since
G(C) is of the form 1/2(< Fn, 0 > + < D, 1 >), Pr<x,b>∼G(C)[AC(x) = b] >
(1 − α)/2 + (α + ε)/2 > 1/2 + ε′ with ε′ = ε/2.

The total run time is O(tW(ℓ) + kW(ℓ)2 + t(ℓ) + 2ℓ).

5.2.4 Strong predictability of BB distribuion implies distinguisher for BB dis-
tribution

Theorem 8 - Conclusion of HC implies dist for all WL: If there is an algorithm
P such that Pr(x,b)∼G(Um)[P(x) = b] > 13/16, then P is also a distinguisher for the
distribution WL = {ttgz |z ∼ {0, 1}m}.

Proof: Let δ = 3/16. We have Pr(x,b)∼G(Um)[P(x) = b] > 1 − δ. Because
G(Um) = 1/2 < UL, 0 > +1/2 < WL, 1 >, we have Prx∼WL [P(x) = 1] > 1 − 2δ.
Now we calculate Prx∼UL [P(x) = 1].
For a similar reason as above, Prx∼UL [P(x) = 0] > 1 − 2δ, so Prx∼UL [P(x) = 1] <
2δ.
Thus, |Prx∼WL [P(x) = 1]− Prx∼UL [P(x) = 1]| > 1 − 4δ = 1/4.
From the definition of distinguisher, P is a distinguisher for WL (when input 1ℓ is
fixed).

20

5.2.5 Proof of uniform learners

Theorem 9 - No PRF implies uniform learners: Let γ : N → [0, 1] and ℓ :
N → N where ℓ(n) is injective and is computable in polynomial time. If there are
no (ε, t)-PRFs in a circuit class Cn[nk] and there is an algorithm W that constructs
a distinguishing circuit BO for a distribution over Cn[nk] by sampling from the
distribution, then the class Cn[nk] has poly(n, 1/γ, 2ℓ)-time learners AO that output
circuits of size t · poly(n).

Proof:
Let f be the input to the learner algorithm A.
A takes input 1n and a function f from Fn as oracle.
Theorem 4 says that there is a poly(n, 1/γ, L(n))-time algorithm AO

0 that takes in
f and returns a (γ, ℓ)-black box generator in C f

n [nk] (the oracle version of the class
Cn[nk]).
Theorem 7, combined with the fact that there is an oracle algorithm WO to gen-
erate distinguishers for all function distributions, proves that there exists a t-time
algorithm AO

2 (1
n), that samples from a distribution C over G(Um) and is a weak

predictor for all 2δ-dense distributions.
Because AO

2 (1
n) is a weak predictor for all 3/8-dense distributions, the Uniform

Hardcore Theorem (using δ = 3/16) provides an poly(t, 2ℓ, 1/ε)-time algorithm P
such that for sufficiently large n:

Pr(x,b)∼G(Um)[P(x) = b] > 13/16

We convert P, on ℓ-bit inputs, into a circuit DP which is a strong predictor for the
distribution G(Um).
(Note: ℓ(n) must be one-to-one because if ℓ(n1) = ℓ(n2) we cannot assume that
the distributions WL for n1 and n2 are the same)
We run A f

0(1
n) to output a circuit Q and run Q f (DP) to output a circuit h. Finally,

A returns the circuit h.
Now we argue that the algorithm works. By Theorem 8, the strong predictor

P is also a distinguisher for WL:

Prx∼WL [P(1
ℓ, x) = 1]− Prx∼UL [P(1

ℓ, x) = 1] > 1 − 4δ = 1/4

Thus, DP is a distinguisher for WL for the particular value ℓ = ℓ(n).
By the definition of black-box generator (which is constructive) inputting the dis-
tinguisher PO into the reconstruction circuit Q, with oracle access to f , returns a
function h such that:

Prx∼Un [h(x) = f (x)] ≥ 1 − 1/γ

Thus, our algorithm A is a learner for Cn[nk].

21

REFERENCES

[1] Igor C. Oliveira and Rahul Santhanam. Conspiracies between learning algorithms,
circuit lower bounds and pseudorandomness, 2016.

[2] Ingo Althöfer. On sparse approximations to randomized strategies and convex
combinations, 1994.

[3] Richard J. Lipton and Neal E. Young. Simple strategies for large zero-sum games
with applications to complexity theory, 1994.

[4] Jia Zheng. A uniform min-max theorem and characterizations of computational
randomness., 2014.

22

APPENDIX A

PROOFS

A.1 Proof of uniform minmax theorem

Consider any P ∈ V (set of pure strategies for the row player) such that
KL(P||P(1)) ≤ S · ε2.
It is shown in Lemma A.1 of [4] that:

KL(P||P(i))− KL(P||P(i)′) ≥ (log e)ε(E[M(P(i), Q(i))]− E[M(P, Q(i))]− ε)

Since P(i+1) is an ε2-approximate KL projection of P(i)′, it follows that:

KL(P||P(i))− KL(P||P(i+1)) ≥ (log e)ε(E[M(P(i), Q(i)]− E[M(P, Q(i))]− ε)− ε2

Summing for i from 1 to S, we get:

KL(P||P(1))−KL(P||P(S+1)) ≥ (log e)Sε(E1≤i≤S[M(P(i), Q(i)]−E[M(P, Q∗)]− ε)−Sε2

Using our bound on KL(P, P(1)), we get:

E1≤i≤S[M(P(i), Q(i))]− E[M(P, Q∗)] ≤ KL(P||P(1)) + Sε2

(log e)Sε
+ ε = O(ε)

A.2 Proof of uniform hardcore theorem

The setup for the minmax theorem is as follows:

• V = Cm,2δ - mixed strategies for player 1

• W = {cktso f size tm + poly(t) } - responses for player 2

M(z, W) = 1 if W(x) = b, else 0, where G(z) = (x, b).
Vadhan and Zheng show that the uniform minmax algorithm can be imple-

mented efficiently in this setting, using ε = ε′/c for a sufficiently large constant c,
γ = ε/2S, and S = (log(1/δ)− 1)/ε2.

23

From the weak predictor A, we use a randomized algorithm to produce a cir-
cuit W of size tm + poly(t) that approximates A with probability 1 − γ such that
Pr[W(x) = b] > 1/2 + ε′ − 4ε. We represent the strategy P(i) as a circuit M(i)

of size ti that computes a measure for P(i), where the value M(i)(z) has bit length
O(i · log(1/ε)).

For each weight update, we compute a circuit M(i)′. The formula is M(i)′(z) =
exp(−ε · I(W(i)(x) = b)) · M(i)(z), where (x, b) = G(z) and I is the indicator
function. The exponential value has bit length log(1/ε) and multiplication can be
done in time poly(i · log(1/ε)). Using our sizes for W and G, we get that M(i)′ has
size t′i = ti + tm + poly(t) + i · polylog(1/ε).

We also need a fast algorithm to do KL projection onto Conv(V).

• As described in Lemma A.3 of [4], KL projection algorithm can be done in
time poly(n, log(1/δ), 1/ε, log(1/γ)).

• Oracle access to the measure M(i)′.

• Distribution corresponding to M(i)′ must be in the neighborhood Cε of C.

• The result is M(i+1), an ε2-approximate projection of M(i)′ on C. The algo-
rithm works with probability 1 − γ and the circuit M(i+1) has size ti+1 =
t′i + polylog(1/ε). Bit length is O((i + 1) · log(1/ε)).

Because the criteria for the uniform minmax theorem are satisfied, we output
a universal predicting distribution A∗. Lemma 3.4 in [4] allows us to do this by
approximating A∗ with a uniform distribution and gives a constructive way to find
a circuit P such that Pr[P(X) = B] > 1 − (1 − ε)δ.
Our predictor relies on an unknown value ϕ. We guess the value ϕ by setting
λ = 1/S, 2/S, ..., 1/2 and computing Eλ = Pr[Pϕ=λ(X) = B] for each λ.
By a Chernoff bound, it follows that Pr[P(X) = B] = 1 − δ.

24

PSEUDO-RANDOM FUNCTIONS AND UNIFORM LEARNABILITY

by

Eric Binnendyk

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the last page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and may require a fee.

25

	TITLE PAGE
	ABSTRACT
	Contents
	Table of Figures
	
	CHAPTER 1
	Orgaization of the paper

	CHAPTER 2
	Circuit Complexity
	Variants and extensions to circuits

	Computational Indistinguishability
	Pseudorandom generator
	Learning
	Black-box generator
	Games and Minmax theorem
	Game matrix
	von Neumann's minmax theorem

	CHAPTER 3
	Game matrix of PRF
	Set up
	Non-existence of PRF - interpretation
	Universal ensemble distinguisher - interpretation

	Non-uniform small support minmax theorem
	Non-existence of PRF implies universal distinguisher
	Universal distinguishers imply learners

	CHAPTER 4
	CHAPTER 5
	Definitions
	Nonexistence of PRF implies uniform learners
	General set up and black-box distribution
	Hardcore Lemma set up
	No PRF implies weak predictability of dense distributions in BB distribution
	Strong predictability of BB distribuion implies distinguisher for BB distribution
	Proof of uniform learners

	REFERENCES
	
	APPENDIX A
	Proof of uniform minmax theorem
	Proof of uniform hardcore theorem

