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Overview

1 Introduction
Main result
Learnability
Circuit complexity
Pseudorandom generator

2 Non-uniform dichotomy
The PRF distinguisher game
Small support min-max theorem
Black-box generators
Non-uniformity

3 Uniform min-max and hardcore theorems
Uniform min-max theorem
Uniform hardcore theorem

4 Main result – Uniform learnability
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Existing result

In the non-uniform setting, there is a dichotomy between learnability and
the existence of pseudorandom functions.
i.e.,
either a class of functions is too weak, and so can be learned
or the class is strong enough to contain pseudorandom generators.
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OUR result

In theuniform setting, there is a dichotomy between learnability and the
existence of pseudorandom functions.
i.e.,
either a class of functions is too weak, and so can be learned
or the class is strong enough to contain pseudorandom generators.
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Existing proof

Assumption: Class A of circuits is to weak to have pseudorandom
generators.
For every pseudorandom generator, there is a detector that can find
out that it is not truly random.

Conclusion: For every input size, the circuits in class A has a learner.
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Existing proof

Assumption: Class A of circuits is to weak to have pseudorandom
generators.
For every pseudorandom generator, there is a detector that can find
out that it is not truly random. (we don’t know how to find the
detector

Conclusion: For every input size, the circuits in class A has a learner.
we don’t have a universal learner
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Existing proof

Assumption: Class A of circuits is to weak to have pseudorandom
generators.
For every pseudorandom generator, there is a detector that can find
out that it is not truly random. (we don’t know how to find the
detector

Non-uniform min-max theorem

Conclusion: For every input size, the circuits in class A has a learner.
we don’t have a universal learner
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OUR proof

Assumption: Class A of circuits is to weak to have pseudorandom
generators.
There is a universal detector - (for any pseudorandom generator),
that can find out that it is not truly random.

uniform min-max theorem

Conclusion: we have a universal learner
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Learnability

A foundational machine learning theory question is which concepts can be
learnt and by which hypotheses and which learners.

Concept class: This limits the allowed complexity of concept. E.g.,
convex shapes, linearly separable classes
hypothesis class: This limits the allowed complexity of hypothesis
learned. E.g.,: Perceptron, quadratic decision boundary etc.
Learner

Queries randomly chosen examples of a concept, knowing what class
the concept belongs to
Outputs a machine that can predict whether new things are examples
of that concept

e.g., perceptron learning algorithm
Many applications: speech recognition, predictive data analytics, etc.
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PAC Learnability

Probability: the learning algorithm can fail on a few concepts in the
concept class
Approximate: successful learning may have some error
resource bounds: computational complexity of the learner
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Learnability of a class A by a class B

The question of learnability is:
can the concept class A be learned to a hypothesis class B by some PAC
learner?
A learner for a family Cn[s] of Boolean functions is an algorithm that
takes a function f ∈ Cn[s] and outputs a function h that approximates f.
If Cn[s] has a learner, we say that it is learnable.

Eric Binnendyk (NMT) Pseudorandomness and learnability April 15, 2021 11 / 38



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Circuit
Circuit: A model of computation which is a DAG (directed acyclic
graph) with nodes for each operation (and, or) as well as nodes for
inputs and outputs.
size: number of nodes.
has a description with size polynomial in the size

It simulates a Boolean function of a fixed input size.

Eric Binnendyk (NMT) Pseudorandomness and learnability April 15, 2021 12 / 38



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The circuit model of computation
A model of computation should be able to take inputs of any size,
similar to a program.
A family of circuits indexed by input size.
function f : N → ckt so that f(n) is a circuit with n-bit input.

Complexity: function from input size to size of circuit -“simple function”
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Non-uniformity

function f taking n and producing a ckt with n inputs.
Non-uniform: f is not computable.
Circuits with different input sizes are doing different things.
Eg: And(a,b); OR(a,b,c), xor(a,b,c,d), majority(a,b,c,d,e)
can solve non-computable problems.

Can still have complexity resource measures in terms of size of
circuits, e.g., nth circuit should have size ≤ poly(n).
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Uniformity

function f taking n and producing a ckt with n inputs.
Uniform: f is computable.
There is a computable relationship between circuits of different sized.

resource limitations on f: e.g., f should be computable by a polytime
algorithm.
Can still have complexity resource measures in terms of size of
circuits, e.g., nth circuit should have size ≤ poly(n).
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Oracle circuits

Oracle circuit: circuit with “oracle gates” that can be substituted with
any Boolean function h (with the correct number of input wires)
Oracle gate is like a black box.
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Pseudorandomness

Pseudorandomness is the property that a Boolean function cannot be
“recognized” as distinct from a random function. In this case, that means
that a set of “simple” functions cannot tell the difference.
This is a fundamental concept in cryptography, where we are interested in
cryptographically secure encryption functions - meaning the outputs of the
function cannot be distinguished from randomness by any statistical tests.
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Pseudorandom generator

Informal idea:
Pseudorandom generator: a function G is capable of producing a
probability distribution X that ‘looks’ random.
detectors: D is the function to which X should appear random, i.e., G
should fool D into believing that X is random.
D samples from an unknown distribution, and has to determine the
distribution is truly random or not.
G may take a truly random seed of length m and X may be
distribution over n > m bits.

D can only do statistical tests; i.e., sample from the distributions
many times, compute something about each sample individually, then
sum up the answers,
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Pseudorandom circuits

A circuit with l inputs is a representation of a 2l bitstring - its truth
table.
A size-limited circuit with l inputs is a compact representation of a 2l

bit-string.
Not all 2l bit strings have compact representation in this manner.
Pseudorandom circuits are distributions over size-limited circuits.
(distributions over a small subset of 2l bit strings)

Access: these distributions are not sampled as bitstrings.
they are sampled at specific locations,
i.e., we cannot ask for a (random) 2l bit string, or a circuit;
we can only ask for the wth bit of a random string, or a random
circuit’s output on input w.
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What is a PRF?

A PRF (pseudorandom function family) formalizes the notion of
“pseudorandomness”.
Informal idea:
The circuits in CircuitO[t] allow us to observe properties of the functions
to test for non-random behavior. Functions in a PRF cheat these filters.
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Non-uniform dichotomy
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The PRF distinguisher game

This is the basis of Oliveira and Santhanam’s proof that a
non-pseudorandom class of functions has learners.

Informally, you can view the definition of PRF as a 2-player game:
One person tries to choose filters that detect non-randomness, the
other person tries to choose functions from Cn[s] that cheat the filters.

This allows us to use results from game theory to analyze PRFs.
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The PRF distinguisher game

Game theory deals with a simple model of a 2-player game:
In a two-player game, player 1 and player 2 both have a number of
pure strategies
The outcome of the game is a numeric value, the payoff for player 2.

These values can be placed in a matrix M.
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The PRF distinguisher game

Mixed strategy: A distribution over pure strategies.
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The PRF distinguisher game

Min-max theorem:

min
P

max
j

Ei∈PM(i, j) = max
Q

min
i

Ej∈QM(i, j)

In English:
If player 2 has a response strategy for any probability distribution over
player 1’s mixed strategies that gives payoff at least ε, there is a single
distribution over player 2’s strategies that has payoff at least ε for all of
player 1’s strategies.
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The PRF distinguisher game

We can set up a game that involves distinguishing PRFs.
Player 1 plays a function from a function family, player 2 plays a filter
circuit.
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The PRF distinguisher game

In this context, the min-max theorem becomes:
If there are no (t(n), ε)-PRFs in Cn[s], then there exists a distribution Q of
filter circuits such that for every function h ∈ Cn[s], we have
PrC∈Q[Ch = 1]− PrC∈Q,f∈Fn [Cf = 1] ≥ ε:
Q is a universal distinguisher.
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Small support min-max theorem

Small support min-max theorem:
Like the min-max theorem, but it creates a small distribution Q.
We can make a randomized circuit D that chooses one of the circuits from
Q at random.
D is a universal distinguisher.
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Black-box generators

A black-box generator allows us to compute a family of functions
gz : {0, 1}ℓ → {0, 1} for z ∈ {0, 1}m, from a function f.
If f ∈ Cn[poly(n)], then gz ∈ Cn[poly(n)].
There is an algorithm A such that if D is a distinguisher for the uniform
distribution WL over all gz, then Af(D) learns f.
All we need to do is find a distinguisher for WL and then we can use A as
our learner.
Oliveira and Santhanam plug in D as their distinguisher for WL and output
a learner.
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Non-uniformity

The problem with this result is that it does not tell us how to find these
polynomial learners (the proof is non-constructive).
Because the proof involves the minmax theorem, and there is no known
efficient algorithm to compute the max-min strategy, we do not know of
an algorithm that inputs integer n and outputs a learner for polynomial
circuits with n inputs. We say the learner is non-uniform.
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Uniform min-max and hardcore theorems
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Uniform min-max theorem

The uniform small support approximate min-max theorem was introduced
by Vadhan and Zheng in 2014. This theorem gives an algorithm to find a
small-support distribution that approximates the min-max/max-min
strategy.

Eric Binnendyk (NMT) Pseudorandomness and learnability April 15, 2021 32 / 38



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Uniform min-max theorem
The uniform min-max theorem requires a function to get efficient
responses Q to each strategy P. The algorithm collects several of these
responses into a single strategy Q∗, which is returned.
For all Player 1 pure strategies P:

M(P,Q∗) ≥ v(M)− δ − ϵ
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Uniform min-max theorem

This algorithm works by updating the weights of Player 1’s strategy. At
each round, Player 1 tries to minimize the next outcome by emphasizing
the pure strategies on which the previous response would perform badly.
It is a boosting algorithm.
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Uniform min-max theorem

In order for this theorem to give us a fast learner, we need some criteria:
A compact representation of the mixed strategies P(i)

(O(Poly(log(n))) space).
A fast algorithm to obtain a response Q(i) for each mixed strategy
P(i).
A fast algorithm to perform weight update, and to project onto
Conv(V).
A choice of pure strategies so that U[N] ∈ Conv(V)
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Uniform hardcore theorem

An application of the uniform min-max theorem described by Vadhan and
Zheng is the uniform hardcore theorem. This is an extension of
Impagliazzo’s Hardcore Theorem.
This theorem involves:

A function G mapping bitstrings of length m to distributions over
{0, 1}L × {0, 1}. The same function can generate distributions for
different values of L with inputs of different lengths.
An algorithm that can predict b given x slightly better than average,
when (x, b) is taken from a “dense” subset of (X,B) = G(Um)

The theorem says there is an algorithm P such that for each m,
Pr(x,b)∈G(Um)[P(x) = b] > 1 − δ.
In other words, if there are weak predictors for dense distributions over
(X,B), there is a strong predictor for all of (X, b).
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Our result

If there are no (ε, t)-PRFs in a circuit class Cn[poly(n)], then the class
Cn[poly(n)] has efficient learners AO which output circuits of size
poly(n, 1/γ, size(D)).

In our proof we assume there is an algorithm W(1n) that samples from a
distribution over Cn[poly(n)] and returns a distinguisher for that
distribution.
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The End
Does anyone have any questions?
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